COMP 347: Applied Machine Learning Lecture Notes

REGRESSION CASE STUDY

Robert Utterback 09/04,/2022
Contents
1__Motivationl 1
[2 Case Study: Housing Prices| 1
import numpy as np

import
import
import
import

pandas as pd
scipy.stats as stats
matplotlib.pyplot as plt
sklearn

1 Motivation

1.1 Experience

e Best way to learn ML is to do it!

e And use real data!

Take a look at the sources of real data the book provides.

Kaggle can help you get started, although remember that even those data sets are cleaner

than real-life, both in the sense of data and in the sense of having a clear goal.

1.2 Main Steps

Big picture

Get the data

Explore

Preprocess/prepare

Train a model

Fine-tune

Present your solution

Deploy: launch, monitor, maintain

2 Case Study: Housing Prices

e I'm going to do basically the same case study, but with a slightly different dataset, just to
give you a slightly different perspective, but not so different than it’s overwhelming (I hope).

e We work for a company that wants to predict housing prices for census "districts", given some
other data about the districts

2.1 Big Picture
e What’s the problem? (Experts estimate it, very slowly)
e How will this model be used? (In a downstream system.)

e Current solution? Is ML the right approach?

Q: What type of ML is this? (supervised, unsupervised, reinforcement) A: supervised

Q: Classification, regression, other? A: regression

Q: batch learning or online? A: batch will be fine here (at least at first)

What’s our performance measure? Very important to think about first!

2.1.1 Performance Measures and Notation

e Book chooses RMSE:

RMSE(X,h) = | — > (h(z®) — y©)*

which is fine.
e Note notation is opposite from what I said was usual!
e m = number of examples, n is number of features
e () is the #*" instance (technically as a column vector), y is its label
e X is a matrix of all instances
e h is prediction function (hypothesis).
e Predicted values are () = h(z®)
e Alternative would be MAE:

1 X A A
MAE(X,h) = — > @ -y
=1

e RMSE is a bit sensitive to outliers: due to squared values, they will outweight things and
possibly produce large errors, which the model might overreact to.

e RMSE is also known as the £ norm, which is an important concept
e MAE, by using absolute value instead of squares, is the ¢; norm

e In general, the ¢ norm, ||v||y is

x|

(lool® + for -+ + o)

e /o is a bit weird but gives the number of nonzero elements in the vector
o /., is the maximum absolute val in the vector

e Notice that as k gets bigger it focuses more and more on the large values.

2.1.2 Check your assumptions

e e.g., do you really need prices, or just price groups?

2.2 Get the data
e I'm basically going to skip this.

e He talks about some good stuff with automatically downloading and unzip it, but you should
be able to read it just fine.

from sklearn.datasets import load_boston
dataset = load_boston()

2.3 Exploring

df = pd.DataFrame(dataset.data)
df .head ()

e It’s convenient to turn it into a dataframe, but actually it is a separate data structures.
e Also try keys (), data.shape, feature_names, DESCR, target, to explore. ..

e But now the columns are just numbers. Let’s make them features

df .columns = dataset.feature_names
or from scratch: pd.DataFrame(boston['data'], columns = boston['feature_names'])
df .head ()

e Let’s also add the target "PRICE" as a column to get a full look at the data
df ['PRICE'] = dataset.target
e Now try out .info() and .describe()

e Most are numeric, which makes things easy to work with. ..

feature name description

CRIM per capita crime rate by town

ZN proportion of residential land zoned for lots over 25,000 sq.ft.
INDUS proportion of non-retail business acres per town

CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
NOX nitric oxides concentration (parts per 10 million)

RM average number of rooms per dwelling

AGE proportion of owner-occupied units built prior to 1940

DIS weighted distances to five Boston employment centres

RAD index of accessibility to radial highways

TAX full-value property-tax rate per $10,000

PTRATIO pupil-teacher ratio by town

B 1000(Bk - 0.63)? where Bk is the proportion of black people by town
LSTAT % lower status of the population

MEDV Median value of owner-occupied homes in $1000’s

Note that CHAS is basically a categorical variable (do .value_counts())

Note also B (old dataset) — want to be careful what you "learn" from this and especially how
this is applied — don’t perpetuate biases.

RAD is numeric, but I wonder if you could treat it as categorical. ..

Let’s look at some histograms:

Jmatplotlib inline
df .hist(bins='auto', figsize=(20,15));

2.4 Making a Test Set

e Don’t look too much at the data before making a test set: you might ’overfit’ to what you see
e In the book he makes a big deal about what happens if you update the dataset

e In reality, this usually isn’t that big a deal, except for really important/large projects

e We'll typically just use sklearn:

from sklearn.model_selection import train_test_split

X = df .drop('PRICE', axis=1)
X_train, X_test, y_train, y_test = \
train_test_split(X, df['PRICE'],
test_size=0.20, random_state=42)

e Although his code to do it manually is interesting, let’s analyze it:

import numpy as np
np.random.seed (42)

For illustration only. Sklearn has train_test_split()

def split_train_test(data, test_ratio):
shuffled_indices = np.random.permutation(len(data))
test_set_size = int(len(data) * test_ratio)
test_indices = shuffled_indices[:test_set_sizel
train_indices = shuffled_indices[test_set_size:]
return data.iloc[train_indices], data.iloc[test_indices]

train_set, test_set = split_train_test(housing, 0.2)

2.5 Continue Exploring

e Look for some correlations:
df .corr () ['PRICE'] .sort_values(ascending=False)

e Then let’s plot one of the features, average # rooms per dwelling, against price

plt.
.x1label ("Average number of rooms per dwelling (RM)")

plt
plt
plt

scatter(df .RM, df.PRICE)

.ylabel("Housing Price")
.title("Relationship between RM and Price")

plt.

2.6

show ()

Pandas can do better and plot lots of things for us:

from pandas.plotting import scatter_matrix

features = ['PRICE', "RM", "ZN", "PTRATIO", "LSTAT"]
scatter_matrix(df [features], figsize=(12,8));

Clearly some of these have some things going on

Things to think about here: are some values getting "clipped"? Do we need to transform /scale
the data? Do we need to remove weird samples or classes of samples (usually because they
have "fake" or missing values)?

Training a Model

At this point the books going into a fair amount of detail about preprocessing:
handling missing values, categorical data, scaling, and pipelines

I’'m going to skip that stuff and go straight to the model

We will come back to that stuff, either soon, or as we need it.

The actual training of models is quite simple!

[10.96952405 19.41196567 23.06419602 12.1470648 18.3738116 25.24677946
20.77024774 23.90932632 7.81713319 19.60988098]

477 12.0
15 19.9
332 19.4
423 13.4
19 18.2
325 24.6
335 21.1
56 24.7
437 8.7
409 27.5

Name: PRICE, dtype: float64

Notice what we want is a diagonal, though as we increase price we're getting further away
This is a linear model, so it has a coefficient and an intercept
1lm.coef_ and 1lm.intercept_

View them with:

lm.coef_ and lm.intercept_
list(zip(X.columns, 1lm.coef_))
or
pd.DataFrame (1ist(zip(X.columns, 1lm.coef_)),
columns = ['features', 'estimated coefficient'])

features estimated coefficient

0 CRIM -0.113056
1 ZN 0.030110
2 INDUS 0.040381
3 CHAS 2.784438
4 NOX -17.202633
5 RM 4.438835
6 AGE -0.006296
7 DIS -1.447865
8 RAD 0.262430
9 TAX -0.010647
10 PTRATIO -0.915456
11 B 0.012351
12 LSTAT -0.508571

2.7 Evaluating
e Can eval with MSE
e Can get from the model itself or calculate manually

pred_train = lm.predict(X_train)

pred_test = lm.predict(X_test)

mse_train = np.mean((y_train - pred_train) x* 2)
mse_test = np.mean((y_test - pred_test) ** 2)
print("Training MSE: {}".format(mse_train))
print("Testing MSE: {}".format(mse_test))

Training MSE: 21.641412753226316
Testing MSE: 24.291119474973385

e Note also from the book:

from sklearn.metrics import mean_squared_error
mse = mean_squared_error(y_train, pred_train)
print(mse, np.sqrt(mse))

e Although this seems better than the book’s California predictions, keep in mind (1) these
prices are in 1000s of dollars, and (2) this was in the 70s — there has been a lot of inflation!

e You can visualize errors with a residual plot
e The residual is the different between target and prediction
e So you want it to however around zero

plt.scatter(pred_train, pred_train - y_train, c='b', alpha=.5, s=40)
plt.scatter(pred_test, pred_test - y_test, c='g', alpha=0.5, s=40)
plt.hlines(y=0, xmin=0, xmax=50)

	Motivation
	Case Study: Housing Prices

