
COMP 347: Applied Machine Learning Lecture Notes

Regression Case Study
Robert Utterback 09/04/2022

Contents

1 Motivation 1

2 Case Study: Housing Prices 1

import numpy as np
import pandas as pd
import scipy.stats as stats
import matplotlib.pyplot as plt
import sklearn

1 Motivation

1.1 Experience

• Best way to learn ML is to do it!

• And use real data!

• Take a look at the sources of real data the book provides.

• Kaggle can help you get started, although remember that even those data sets are cleaner
than real-life, both in the sense of data and in the sense of having a clear goal.

1.2 Main Steps

Big picture
Get the data
Explore
Preprocess/prepare
Train a model
Fine-tune
Present your solution
Deploy: launch, monitor, maintain

2 Case Study: Housing Prices

• I’m going to do basically the same case study, but with a slightly different dataset, just to
give you a slightly different perspective, but not so different than it’s overwhelming (I hope).

• We work for a company that wants to predict housing prices for census "districts", given some
other data about the districts

2.1 Big Picture

• What’s the problem? (Experts estimate it, very slowly)

• How will this model be used? (In a downstream system.)

• Current solution? Is ML the right approach?

• Q: What type of ML is this? (supervised, unsupervised, reinforcement) A: supervised

• Q: Classification, regression, other? A: regression

• Q: batch learning or online? A: batch will be fine here (at least at first)

• What’s our performance measure? Very important to think about first!

2.1.1 Performance Measures and Notation

• Book chooses RMSE:

RMSE(X, h) =

√√√√ 1

m

m∑
i=1

(
h(x(i))− y(i)

)2
which is fine.

• Note notation is opposite from what I said was usual!

• m = number of examples, n is number of features

• x(i) is the ith instance (technically as a column vector), y(i) is its label

• X is a matrix of all instances

• h is prediction function (hypothesis).

• Predicted values are ŷ(i) = h(x(i))

• Alternative would be MAE:

MAE(X, h) =
1

m

m∑
i=1

|h(x(i) − y(i)|

• RMSE is a bit sensitive to outliers: due to squared values, they will outweight things and
possibly produce large errors, which the model might overreact to.

• RMSE is also known as the ℓ2 norm, which is an important concept

• MAE, by using absolute value instead of squares, is the ℓ1 norm

• In general, the ℓk norm, ∥v∥k is(
|v0|k + |v1|k + · · ·+ |vn|k

) 1
k

• ℓ0 is a bit weird but gives the number of nonzero elements in the vector

• ℓ∞ is the maximum absolute val in the vector

• Notice that as k gets bigger it focuses more and more on the large values.

2

2.1.2 Check your assumptions

• e.g., do you really need prices, or just price groups?

2.2 Get the data

• I’m basically going to skip this.

• He talks about some good stuff with automatically downloading and unzip it, but you should
be able to read it just fine.

from sklearn.datasets import load_boston
dataset = load_boston()

2.3 Exploring

df = pd.DataFrame(dataset.data)
df.head()

• It’s convenient to turn it into a dataframe, but actually it is a separate data structures.

• Also try keys(), data.shape, feature_names, DESCR, target, to explore. . .

• But now the columns are just numbers. Let’s make them features

df.columns = dataset.feature_names
or from scratch: pd.DataFrame(boston['data'], columns = boston['feature_names'])
df.head()

• Let’s also add the target "PRICE" as a column to get a full look at the data

df['PRICE'] = dataset.target

• Now try out .info() and .describe()

• Most are numeric, which makes things easy to work with. . .

feature name description
CRIM per capita crime rate by town
ZN proportion of residential land zoned for lots over 25,000 sq.ft.
INDUS proportion of non-retail business acres per town
CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
NOX nitric oxides concentration (parts per 10 million)
RM average number of rooms per dwelling
AGE proportion of owner-occupied units built prior to 1940
DIS weighted distances to five Boston employment centres
RAD index of accessibility to radial highways
TAX full-value property-tax rate per $10,000
PTRATIO pupil-teacher ratio by town
B 1000(Bk - 0.63)2 where Bk is the proportion of black people by town
LSTAT % lower status of the population
MEDV Median value of owner-occupied homes in $1000’s

3

• Note that CHAS is basically a categorical variable (do .value_counts())

• Note also B (old dataset) – want to be careful what you "learn" from this and especially how
this is applied – don’t perpetuate biases.

• RAD is numeric, but I wonder if you could treat it as categorical. . .

• Let’s look at some histograms:

%matplotlib inline
df.hist(bins='auto', figsize=(20,15));

2.4 Making a Test Set

• Don’t look too much at the data before making a test set: you might ’overfit’ to what you see

• In the book he makes a big deal about what happens if you update the dataset

• In reality, this usually isn’t that big a deal, except for really important/large projects

• We’ll typically just use sklearn:

from sklearn.model_selection import train_test_split

X = df.drop('PRICE', axis=1)
X_train, X_test, y_train, y_test = \

train_test_split(X, df['PRICE'],
test_size=0.20, random_state=42)

• Although his code to do it manually is interesting, let’s analyze it:

import numpy as np
np.random.seed(42)

For illustration only. Sklearn has train_test_split()
def split_train_test(data, test_ratio):

shuffled_indices = np.random.permutation(len(data))
test_set_size = int(len(data) * test_ratio)
test_indices = shuffled_indices[:test_set_size]
train_indices = shuffled_indices[test_set_size:]
return data.iloc[train_indices], data.iloc[test_indices]

train_set, test_set = split_train_test(housing, 0.2)

2.5 Continue Exploring

• Look for some correlations:

df.corr()['PRICE'].sort_values(ascending=False)

• Then let’s plot one of the features, average # rooms per dwelling, against price

4

plt.scatter(df.RM, df.PRICE)
plt.xlabel("Average number of rooms per dwelling (RM)")
plt.ylabel("Housing Price")
plt.title("Relationship between RM and Price")
plt.show()

• Pandas can do better and plot lots of things for us:

from pandas.plotting import scatter_matrix

features = ['PRICE', "RM", "ZN", "PTRATIO", "LSTAT"]
scatter_matrix(df[features], figsize=(12,8));

• Clearly some of these have some things going on

• Things to think about here: are some values getting "clipped"? Do we need to transform/scale
the data? Do we need to remove weird samples or classes of samples (usually because they
have "fake" or missing values)?

2.6 Training a Model

• At this point the books going into a fair amount of detail about preprocessing:

• handling missing values, categorical data, scaling, and pipelines

• I’m going to skip that stuff and go straight to the model

• We will come back to that stuff, either soon, or as we need it.

• The actual training of models is quite simple!

[10.96952405 19.41196567 23.06419602 12.1470648 18.3738116 25.24677946
20.77024774 23.90932632 7.81713319 19.60988098]

477 12.0
15 19.9
332 19.4
423 13.4
19 18.2
325 24.6
335 21.1
56 24.7
437 8.7
409 27.5
Name: PRICE, dtype: float64

• Notice what we want is a diagonal, though as we increase price we’re getting further away

• This is a linear model, so it has a coefficient and an intercept

• lm.coef_ and lm.intercept_

• View them with:

5

lm.coef_ and lm.intercept_
list(zip(X.columns, lm.coef_))
or
pd.DataFrame(list(zip(X.columns, lm.coef_)),

columns = ['features', 'estimated coefficient'])

features estimated coefficient
0 CRIM -0.113056
1 ZN 0.030110
2 INDUS 0.040381
3 CHAS 2.784438
4 NOX -17.202633
5 RM 4.438835
6 AGE -0.006296
7 DIS -1.447865
8 RAD 0.262430
9 TAX -0.010647
10 PTRATIO -0.915456
11 B 0.012351
12 LSTAT -0.508571

2.7 Evaluating

• Can eval with MSE

• Can get from the model itself or calculate manually

pred_train = lm.predict(X_train)
pred_test = lm.predict(X_test)
mse_train = np.mean((y_train - pred_train) ** 2)
mse_test = np.mean((y_test - pred_test) ** 2)
print("Training MSE: {}".format(mse_train))
print("Testing MSE: {}".format(mse_test))

Training MSE: 21.641412753226316
Testing MSE: 24.291119474973385

• Note also from the book:

from sklearn.metrics import mean_squared_error
mse = mean_squared_error(y_train, pred_train)
print(mse, np.sqrt(mse))

• Although this seems better than the book’s California predictions, keep in mind (1) these
prices are in 1000s of dollars, and (2) this was in the 70s – there has been a lot of inflation!

• You can visualize errors with a residual plot

• The residual is the different between target and prediction

• So you want it to however around zero

plt.scatter(pred_train, pred_train - y_train, c='b', alpha=.5, s=40)
plt.scatter(pred_test, pred_test - y_test, c='g', alpha=0.5, s=40)
plt.hlines(y=0, xmin=0, xmax=50)

6

	Motivation
	Case Study: Housing Prices

