COMP 347: Applied Machine Learning

Lecture Notes

09/04/2022

1

1

REGRESSION CASE STUDY

 $Robert \ Utterback$

Contents

1	Motivation	

2 Case Study: Housing Prices

```
import numpy as np
import pandas as pd
import scipy.stats as stats
import matplotlib.pyplot as plt
import sklearn
```

1 Motivation

1.1 Experience

- Best way to learn ML is to do it!
- And use real data!
- Take a look at the sources of real data the book provides.
- Kaggle can help you get started, although remember that even those data sets are cleaner than real-life, both in the sense of data and in the sense of having a clear goal.

1.2 Main Steps

Big picture Get the data Explore Preprocess/prepare Train a model Fine-tune Present your solution Deploy: launch, monitor, maintain

2 Case Study: Housing Prices

- I'm going to do basically the same case study, but with a slightly different dataset, just to give you a slightly different perspective, but not so different than it's overwhelming (I hope).
- We work for a company that wants to predict housing prices for census "districts", given some other data about the districts

2.1 Big Picture

- What's the problem? (Experts estimate it, very slowly)
- How will this model be used? (In a downstream system.)
- Current solution? Is ML the right approach?
- Q: What type of ML is this? (supervised, unsupervised, reinforcement) A: supervised
- Q: Classification, regression, other? A: regression
- Q: batch learning or online? A: batch will be fine here (at least at first)
- What's our performance measure? Very important to think about first!

2.1.1 Performance Measures and Notation

• Book chooses RMSE:

RMSE
$$(\boldsymbol{X}, h) = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (h(\boldsymbol{x}^{(i)}) - y^{(i)})^2}$$

which is fine.

- Note notation is opposite from what I said was usual!
- m = number of examples, n is number of features
- $\boldsymbol{x}^{(i)}$ is the *i*th instance (technically as a column vector), $y^{(i)}$ is its label
- X is a matrix of all instances
- h is prediction function (hypothesis).
- Predicted values are $\hat{y}^{(i)} = h(\boldsymbol{x}^{(i)})$
- Alternative would be MAE:

MAE
$$(\mathbf{X}, h) = \frac{1}{m} \sum_{i=1}^{m} |h(\mathbf{x}^{(i)} - y^{(i)})|$$

- RMSE is a bit sensitive to outliers: due to squared values, they will outweight things and possibly produce large errors, which the model might overreact to.
- RMSE is also known as the ℓ_2 **norm**, which is an important concept
- MAE, by using absolute value instead of squares, is the ℓ_1 norm
- In general, the ℓ_k norm, $\|\boldsymbol{v}\|_k$ is

$$\left(|v_0|^k + |v_1|^k + \dots + |v_n|^k\right)^{\frac{1}{k}}$$

- ℓ_0 is a bit weird but gives the number of nonzero elements in the vector
- ℓ_{∞} is the maximum absolute val in the vector
- Notice that as k gets bigger it focuses more and more on the large values.

2.1.2 Check your assumptions

• e.g., do you really need prices, or just price groups?

2.2 Get the data

- I'm basically going to skip this.
- He talks about some good stuff with automatically downloading and unzip it, but you should be able to read it just fine.

from sklearn.datasets import load_boston
dataset = load_boston()

2.3 Exploring

```
df = pd.DataFrame(dataset.data)
df.head()
```

- It's convenient to turn it into a dataframe, but actually it is a separate data structures.
- Also try keys(), data.shape, feature_names, DESCR, target, to explore...
- But now the columns are just numbers. Let's make them features

```
df.columns = dataset.feature_names
# or from scratch: pd.DataFrame(boston['data'], columns = boston['feature_names'])
df.head()
```

• Let's also add the target "PRICE" as a column to get a full look at the data

df['PRICE'] = dataset.target

- Now try out .info() and .describe()
- Most are numeric, which makes things easy to work with...

feature name	description
CRIM	per capita crime rate by town
ZN	proportion of residential land zoned for lots over 25,000 sq.ft.
INDUS	proportion of non-retail business acres per town
CHAS	Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
NOX	nitric oxides concentration (parts per 10 million)
RM	average number of rooms per dwelling
AGE	proportion of owner-occupied units built prior to 1940
DIS	weighted distances to five Boston employment centres
RAD	index of accessibility to radial highways
TAX	full-value property-tax rate per \$10,000
PTRATIO	pupil-teacher ratio by town
В	$1000(Bk - 0.63)^2$ where Bk is the proportion of black people by town
LSTAT	% lower status of the population
MEDV	Median value of owner-occupied homes in \$1000's

- Note that CHAS is basically a categorical variable (do .value_counts())
- Note also B (old dataset) want to be careful what you "learn" from this and especially how this is applied don't perpetuate biases.
- RAD is numeric, but I wonder if you could treat it as categorical...
- Let's look at some histograms:

```
# %matplotlib inline
df.hist(bins='auto', figsize=(20,15));
```

2.4 Making a Test Set

- Don't look too much at the data before making a test set: you might 'overfit' to what you see
- In the book he makes a big deal about what happens if you update the dataset
- In reality, this usually isn't that big a deal, except for really important/large projects
- We'll typically just use sklearn:

```
from sklearn.model_selection import train_test_split
X = df.drop('PRICE', axis=1)
X_train, X_test, y_train, y_test = \
    train_test_split(X, df['PRICE'],
        test_size=0.20, random_state=42)
```

• Although his code to do it manually is interesting, let's analyze it:

```
import numpy as np
np.random.seed(42)
```

```
# For illustration only. Sklearn has train_test_split()
def split_train_test(data, test_ratio):
    shuffled_indices = np.random.permutation(len(data))
    test_set_size = int(len(data) * test_ratio)
    test_indices = shuffled_indices[:test_set_size]
    train_indices = shuffled_indices[test_set_size:]
    return data.iloc[train_indices], data.iloc[test_indices]
```

train_set, test_set = split_train_test(housing, 0.2)

2.5 Continue Exploring

• Look for some correlations:

df.corr()['PRICE'].sort_values(ascending=False)

• Then let's plot one of the features, average # rooms per dwelling, against price

```
plt.scatter(df.RM, df.PRICE)
plt.xlabel("Average number of rooms per dwelling (RM)")
plt.ylabel("Housing Price")
plt.title("Relationship between RM and Price")
plt.show()
```

• Pandas can do better and plot lots of things for us:

```
from pandas.plotting import scatter_matrix
```

```
features = ['PRICE', "RM", "ZN", "PTRATIO", "LSTAT"]
scatter_matrix(df[features], figsize=(12,8));
```

- Clearly some of these have some things going on
- Things to think about here: are some values getting "clipped"? Do we need to transform/scale the data? Do we need to remove weird samples or classes of samples (usually because they have "fake" or missing values)?

2.6 Training a Model

- At this point the books going into a fair amount of detail about preprocessing:
- handling missing values, categorical data, scaling, and pipelines
- I'm going to skip that stuff and go straight to the model
- We will come back to that stuff, either soon, or as we need it.
- The actual training of models is quite simple!

```
[10.96952405 19.41196567 23.06419602 12.1470648 18.3738116 25.24677946
 20.77024774 23.90932632 7.81713319 19.60988098]
477
       12.0
15
       19.9
332
       19.4
423
       13.4
       18.2
19
325
       24.6
335
       21.1
56
       24.7
437
        8.7
409
       27.5
Name: PRICE, dtype: float64
```

- Notice what we want is a diagonal, though as we increase price we're getting further away
- This is a linear model, so it has a coefficient and an intercept
- lm.coef_ and lm.intercept_
- View them with:

```
# lm.coef_ and lm.intercept_
list(zip(X.columns, lm.coef_))
# or
pd DataFrame(list(zip(X columns, lm coef_)),
    columns = ['features', 'estimated coefficient'])
   features estimated coefficient
0
       CRIM
                          -0.113056
1
         7.N
                           0.030110
2
      INDUS
                           0.040381
3
       CHAS
                           2.784438
4
        NOX
                         -17.202633
5
                           4.438835
         RM
6
        AGE
                          -0.006296
7
        DIS
                          -1.447865
8
        RAD
                           0.262430
9
        TAX
                          -0.010647
10
   PTRATIO
                          -0.915456
11
          В
                           0.012351
12
      LSTAT
                          -0.508571
```

2.7 Evaluating

- Can eval with MSE
- Can get from the model itself or calculate manually

```
pred_train = lm.predict(X_train)
pred_test = lm.predict(X_test)
mse_train = np.mean((y_train - pred_train) ** 2)
mse_test = np.mean((y_test - pred_test) ** 2)
print("Training MSE: {}".format(mse_train))
print("Testing MSE: {}".format(mse_test))
```

Training MSE: 21.641412753226316 Testing MSE: 24.291119474973385

• Note also from the book:

```
from sklearn.metrics import mean_squared_error
mse = mean_squared_error(y_train, pred_train)
print(mse, np.sqrt(mse))
```

- Although this seems better than the book's California predictions, keep in mind (1) these prices are in 1000s of dollars, and (2) this was in the 70s there has been a lot of inflation!
- You can visualize errors with a **residual plot**
- The residual is the different between target and prediction
- So you want it to however around zero

```
plt.scatter(pred_train, pred_train - y_train, c='b', alpha=.5, s=40)
plt.scatter(pred_test, pred_test - y_test, c='g', alpha=0.5, s=40)
plt.hlines(y=0, xmin=0, xmax=50)
```