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This project is based on a project by Jon Shidal designed for the Operating Systems
course at Washington University in St. Louis.

1 Overview

Like the first project, this project will have 2 parts. In the first part you will get to
implement your own user space memory allocator. You will learn the complexities and
details of memory allocation and handling free lists first-hand. You will also learn to build
a shared dynamic library and you may even think a little bit about the efficiency of your
code.

In the second part, you will first become familiar with how xv6 virtualizes memory
and then add a couple of additional features to xv6 that many modern operating systems
already have.

The projects from here on out will most likely take much more time than the first, so
you are welcome to work in teams of up to 2 for this project. Procrastinating on this project
(or future projects) will not turn out well for you.

2 Part A: User-space Memory Allocation

For this part of the project, you will be developing your own user space memory allocation
library (which will replace the standard memory allocator, e.g. malloc() and free()).

2.1 Some resources to get started

Read Chapter 14 on the memory API (if you haven’t already) to get a grasp on how malloc
and free are called and what they return. Also have a look at their man pages.

Read Chapter 17 on free space management for details on how to go about implementing
your own allocator. This chapter will help you tremendously on this project.

Note: You will eventually need to add a header to each allocated object much like the
one described in Ch. 17. Your header should not exceed 16 bytes in size.


http://pages.cs.wisc.edu/~remzi/OSTEP/vm-api.pdf
http://pages.cs.wisc.edu/~remzi/OSTEP/vm-freespace.pdf

2.2 Detalils

Memory allocators have a couple of responsibilities. First, the allocator must request mem-
ory from the OS for the process’s heap. Typically, allocators start with a small heap and
ask the OS for more space when needed by the application (this reduces the number of valid
page table entries for the given process to only those needed by the process). Allocators
may use sbrk or mmap to ask the OS for additional space. We will simplify our allocator by
only asking the OS for memory space once. When we are out of heap space, we are simply
out of space.

The second task of an allocator is to manage the heap, generally by maintaining a list
of unused chunks of memory. When the process asks to allocate some heap space, the
allocator chooses a chunk of free memory and returns it to the process via a pointer to it.
When the process no longer needs a memory chunk, the allocator adds the freed memory
back to the list of unused memory chunks.

The user space memory allocator is generally included as part of the standard library.
It is not part of the OS. It runs fully in the virtual address space of the process, with no
concept of pages or physical addresses. Address translation and the mapping of virtual
pages to physical page frames is handled entirely by the OS.

Classic malloc() and free() are defined as follows:

e void *malloc(size_t size): allocates size bytes and returns a pointer to the allo-
cated memory. The memory is not cleared or initialized in any way.

e void free(void *ptr): frees the memory space pointed to by ptr, which must have
been returned by a previous call tomalloc() (or calloc() or realloc()). Otherwise,
or if free(ptr) has already been called before, undefined behaviour occurs. If ptr is
NULL, no operation is performed.

Your implementations of Mem_Alloc(int size, int policy) and Mem_Free(void *ptr)
should follow what malloc() and free() do; see below for details.

You will also provide a supporting function, Mem_Dump (), described below; this routine
simply prints which regions are currently free and should be used by you for debugging
purposes.

2.3 Program Specifications

For this project, you will be implementing several different routines as part of a shared
library. Note that you will not be writing a main() routine for the code that you handin
(but you should implement one for your own testing). We have provided the prototypes
for these functions in the file mem.h (which is available in /home/comp345/proj2a.zip);
you should include this header file in your code to ensure that you are adhering to the
specification exactly. You should not change mem.h in any way! We now define each of
these routines more precisely.

e int Mem_Init(int size): called one time by a process using your routines. size is
the number of bytes that you should request from the OS using mmap ().

e Note that you may need to round up this amount so that you request memory in
units of the page size (see the man pages for getpagesize()). Note also that you



need to use this allocated memory for your own data structures as well; that is, your
infrastructure for tracking the mapping from addresses to memory objects has to be
placed in this region as well. You are not allowed to malloc(), or any other related
function, in any of your routines! Similarly, you should not allocate global arrays.
However, you may allocate a few global variables (e.g., a pointer to the head of your
free list.)

e Return 0 on a success (when call to mmap is successful). Otherwise, return —1 and set
m_err to ERR_BAD_ARGS. Cases where Mem_Init should return a failure: Mem_Init is
called more than once; size is less than or equal to 0.

e void *Mem_Alloc(int size, int policy): similar to the library function malloc().
Mem_Alloc takes as input the size in bytes of the object to be allocated as well as
an allocation policy, and returns a pointer to the start of that object. The function
returns NULL if there is not enough contiguous free space within the memory allo-
cated by Mem_Init to satisfy this request (and sets m_err to ERR_OUT_OF_SPACE). If
Mem_Init has not been called yet, you should set m_err to ERR_MEM_UNINITIALIZED
and return NULL.

e You should implement multiple allocation strategies, as described in the book.

— 0 - Best-Fit
— 1 - First-Fit
— 2 - Next-Fit (extra credit - 10 points)

Use the policy number passed to Mem_Alloc() to decide which allocation policy to use for
the given allocation.

e For performance reasons, Mem_Alloc() should return 8-byte aligned chunks of mem-
ory. For example, if a user allocates 1 byte of memory, your

Mem_Alloc() implementation should return 8 bytes of memory so that the next free block
will be 8-byte aligned too. To figure out whether you return 8-byte aligned pointers, you
could print the pointer this way: printf ("%p", ptr). The last digit should be a multiple
of 8 (i.e., 0 or 8).

e int Mem_Free(void *ptr): frees the memory object that ptr points to. Just like
with the standard free(), if ptr is NULL, then no operation is performed. The func-
tion returns 0 on success and -1 otherwise. On failure, set m_err to ERR_INVALID_PTR
prior to returning -1.

e (Coalescing: Mem_Free() should make sure to coalesce free space. Coalescing rejoins
neighboring freed blocks into one bigger free chunk, thus ensuring that big chunks
remain free for subsequent calls to Mem_Alloc().

e void Mem_Dump(): This is just a debugging routine for your own use. Have it print
the regions of free memory to the screen.

You must provide these routines in a shared library named libmem.so. Placing the
routines in a shared library instead of a simple object file makes it easier for other program-
mers to link with your code. There are further advantages to shared (dynamic) libraries



over static libraries. When you link with a static library, the code for the entire library is
merged with your object code to create your executable; if you link to many static libraries,
your executable will be enormous. However, when you link to a shared library, the library’s
code is not merged with your program’s object code; instead, a small amount of stub code
is inserted into your object code and the stub code finds and invokes the library code when
you execute the program. Therefore, shared libraries have two advantages: they lead to
smaller executables and they enable users to use the most recent version of the library
at run-time. To create a shared library named libmem.so, use the following commands
(assuming your library code is in a single file mem.c):

gcc -fpic -c mem.c -Wall -Werror
gcc -shared -o libmem.so mem.o

To link with this library, you simply specify the base name of the library with -lmem
and the path so that the linker can find the library with -L.. Note that these must come
at the end of the command line.

gcc -o myprog main.c -Wall -Werror -L. -1lmem

Of course, these commands should be placed in a Makefile. Before you run myprogram,
you will need to set the environment variable LD_LIBRARY_PATH, so that the system can find
your library at run-time. Assuming you always run myprogram from this same directory,
you can use the command:

export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:."

2.4 Unix Hints

In this project, you will use mmap to map zero’d pages (i.e., allocate new pages) into the
address space of the calling process. Note there are a number of different ways that you
can call mmap to achieve this same goal; we give one example here:

// open the /dev/zero device int
fd = open("/dev/zero", O_RDWR);

// size (in bytes) needs to be evenly divisible by the page size

size_t size = ...;

void *ptr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
if (ptr == MAP_FAILED) { perror("mmap"); exit(1l); }

// close the device (don't worry, mapping should be unaffected)
close(fd);
return O;

3 Part B: Explore Memory Virtualization in xv6

In this part of the project, you should get familiar with how xv6 handles memory virtual-
ization. You will have two goals:



1. Create a new system call that takes a virtual address and returns the physical address
that it maps to.

2. Check for a program dereferencing a null pointer and throw an exception if so. This
is standard in pretty much all operating systems today.

The order you finish each of these tasks in does not matter. You may find that handling
null pointers first may help you understand the memory virtualization structures enough
to implement the system call easily.

Start by reading chapter 2 of the xv6 book here (https://pdos.csail.mit.edu/6.
828/2018/xv6/book-revll.pdf).

3.1 Details
3.1.1 Part1l

You will add a system call named sys_translate to xv6. Translate takes a virtual address
as a parameter (a pointer) and returns the physical address that the virtual address maps
to. This is similar to the system call you added for project 1, however you will need to look
through the code and gain some understanding on xv6 the data structures and techniques
xv6 uses to handle address translation.

3.1.2 Part 2

In xv6, the VM system uses a simple two-level page table as discussed in class. As it
currently is structured, user code is loaded into the very first part of the address space.
Thus, if you dereference a null poin‘cerﬂ7 you will not see an exception (as you might expect);
rather, you will see whatever code is the first bit of code in the program that is running.
Try IIIit and see!

Thus, the first thing you might do is create a program that dereferences a null pointer.
It is simple! See if you can do it. Then run it on Linux as well as xv6, to see the difference.
Your job here will be to figure out how xv6 sets up a page table. Thus, once again, this
project is mostly about understanding the code, and not writing very much. Look at how
exec() works to better understand how address spaces get filled with code and in general
initialized. That will get you most of the way.

You should also look at exec() , in particular the part where the address space of the
child is created by copying the address space of the parent. What needs to change in there?
The rest of your task will be completed by looking through the code to figure out where
there are checks or assumptions made about the address space. Think about what happens
when you pass a parameter into the kernel, for example; if passing a pointer, the kernel
needs to be very careful with it, to ensure you haven’t passed it a bad pointer. How does it
do this now? Does this code need to change in order to work in your new version of xv6?

One last hint: you’ll have to look at the xv6 makefile as well. In there, user programs
are compiled so as to set their entry point (where the first instruction is) to 0. If you change
xv6 to make the first page invalid, clearly the entry point will have to be somewhere else

! Actually, by default you will see an exception when you dereference a null pointer, but not for other
lower addresses, such as 0x1. This has to do with compiler optimizations. Change the Makefile to use -01
instead of -02 to see this.


https://pdos.csail.mit.edu/6.828/2018/xv6/book-rev11.pdf
https://pdos.csail.mit.edu/6.828/2018/xv6/book-rev11.pdf
https://pdos.csail.mit.edu/6.828/2018/xv6/book-rev11.pdf

(e.g., the next page, or 0x1000). Thus, something in the makefile will need to change to
reflect this as well. You should be able to demonstrate what happens when user code tries
to access a null pointer. If you do this part correctly, xv6 should trap and kill the process
without too much trouble on your part.

4 Submitting

Create a README file for your project. In it, list each member in your group’s name and
briefly describe:

1. Part 1: what your library does. Compare the allocation strategies you implemented.

2. The changes you made to xv6, including any test/example programs you wrote.

As in project 1, use git diff to create a patch with your xv6 changes. Then submit
all your files (new files + your patch file) with handin.
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