
COMP 345 Operating Systems

Project 1
Assigned: January 21 Due: February 04

1 Overview
There are two parts to this project. The goal of the first part of this project is to get up to speed on
C programming. You will get experience making system calls from your program, compiling with
gcc in the linux environment, and reading man pages to understand how to use library functions
or system calls.

In the second part of the project, you will get an introduction to xv6. Xv6 is a fully functional
operating system developed at MIT. Xv6 is much simpler than modern operating systems, making
it a great tool for teaching OS concepts. We will use xv6 to better understand how the concepts
we cover in class are implemented in a real operating system. The first lab will be reasonably light
on coding, but will give you an opportunity to explore and understand the xv6 code base as well
as understand how system calls are handled by xv6.

You will work alone on both parts of this project; however you may feel free to discuss the project
and give/receive help debugging your or someone else’s project. Sharing code is cheating. A
good rule of thumb is: if you look at someone’s code, do something else for an hour before returning
to your own code.

1.1 Programming environment
You should code in C in a linux environment. The easiest way to do this is to use the department
server as in many of the department’s classes. Other options may be:

• Installing Linux on one of your personal machines, either as the main OS or dual-booting

• Installing Linux on a virtual machine

• installing the correct toolchains and tools on a system of your choice1

2 Part A: Systems Programming Intro

2.1 Overview
You will write a program in C to read records in from a file, sort and filter the records based on
their key values, and output the sorted and filtered records to a new file.

The program is run from a terminal using:

./sort -i inputfile -o outputfile

This line means the sort program is being run with 2 required command-line arguments:

1. an input file called inputfile

2. an output file called outputfile

Input files can be generated using generate.c which will be given to you. After compiling and
running generate, you will have a file of unsorted records (40 bytes each) in the form:

kddddddddd
1This can be tricky and time consuming: if you choose to do this it will be done on your own time. Instructions

on this can be found here: https://pdos.csail.mit.edu/6.828/2016/tools.html.

https://pdos.csail.mit.edu/6.828/2016/tools.html


where each letter represents a 32-bit unsigned int. The k (the first 32 bit unsigned int) is the
key of the record and should be used for sorting and filtering. d’s are data corresponding to the key
and are to be kept alongside the key. This means the entire record must be moved when sorted.

Some helper files are included in /home/comp345/proj1a.zip. Copy this file to whatever di-
rectory you’d like to work in and unzip the files with unzip proj1a.zip.

You can use dump.c to output the contents of a generated file in a readable format. This will
be useful for debugging and testing your program.

Your goal is to implement the sort program. It should read input records from a generated
input file, sort them based on the key, and write the correct records out to the specified output file
in sorted order.

Name your source file for sorting sort.c. A script will be used to compile and test your code,
please ensure you follow this instruction!! If you have multiple source files or additional header files,
be sure to submit those as well.

2.2 Helper Program Details
Compile generate.c using:

gcc -o generate generate.c -Wall -Werror

Note: You will also need the record.h header file to compile
Run generate using:

./generate -s 1 -n 100 -o ./data

generate takes 3 flags:

• -s specifies the random number seed; this allows you to generate different files to use for
testing

• -n specifies the number of records to generate

• -o specifies the file name to write output to, which will be the input to your sort program

To compile dump.c use:

gcc -o dump dump.c -Wall -Werror

Run using:

./dump -i inputfile

This will read in 40 bytes at a time from the input file specified by the -i flag, and print the
bytes formatted as a record to stdout.

2.3 Hints
• Use open(), read(), write(), and close() to access files. See code in generate.c and
dump.c for examples. Feel free to copy code out of generate.c and dump.c as needed. Any
files given to you are fair game to model your code after.

• To get the size of an input file before reading from it, use stat() or fstat() calls.

• To sort the records, feel free to use the qsort() library routine.

• To exit, call exit() with one parameter. The parameter is visible to the user after exiting,
allowing the user to see if the program ran successfully or if the program exited with an
error. Generally, exit(0) is used for a successful exit while a non-zero parameter indicates
the program exited with an error. Use fprintf() to output a useful error message to stderr
anytime your program exits on an error.

2



• Use the malloc() routine to dynamically allocate memory. Make sure to check that the call
to malloc() succeeded, exit gracefully if not.

• Read the man pages for any routine or system call that you don’t understand. For example,
man malloc will give you information on how to use malloc().

2.4 Bonus
For some bonus points, extend your sort program with an optional option -t. This option should
take an integer argument. This argument serves as a threshold for the records — you should filter
out any records with keys strictly greater than the threshold value.

3 Part B: Xv6 Intro

3.1 Overview
In this part we’ll download the source code, build, and install xv6. We’ll run xv6 on qemu, a system
emulator, as opposed to running it on real hardware, since running it on real hardware would mean
manually restarting the machine every time something fails. I’ve already installed qemu2 on the
server for you to use.

You will then implement a system call called getreadcount. This system call simply returns
the number of times the read system call has been called since startup. This will not require much
coding, however it will require you to dig into the source code a bit and begin to understand how
it is working.

3.2 Getting and building xv6

• Create a directory for the xv6 source code.

• Clone the git repository for xv6 using:

git clone git://github.com/mit-pdos/xv6-public.git

• cd into the directory created by the clone. Build the source code using make

• Run the make qemu command.

• Qemu should start and emulate a system running your built xv6 code. Pretty awesome! Play
around with xv6 a bit and notice how little functionality it has. When you’re ready to exit,
type "Ctrl-a x" (hit the ’a’ key while holding down the control key, then release both and hit
the ’x’ key).

3.3 Project details
Now that you have a running emulator and the source code for xv6, your task is to implement a
system call called getreadcount. This system call should simply return the number of times the
read system call has been called since startup. You will need a counter to track this.

Look through the xv6 source code at some other system calls (sys_getpid, sys_kill, etc.) to
get an idea of which files you will need to modify and how you should go about creating a new
system call. I suggest reading about linux utilities such as grep to make searching through the
source code easier.

To test your system call, you may decide to implement a user space program in the xv6 code3.
ls is an example of a user space program built into xv6, I would suggest modeling your program off

2Actually I installed a patched version that includes better debugging functionality
3I highly recommend this; otherwise it is too easy to miss something

3



of it and looking how it is included in the Makefile to make sure your program is compiled along
with xv6.

Most of your time on this part of the project should be spent looking through the source code
and making enough sense of it to be able to modify it to do what you need to do. There are likely
other pieces of code that do something similar to what you want to do. You are free to copy and
modify any code already in the xv6 source.

3.4 Bonus
For some bonus points you can implement a slightly harder system call: sccount. This system call
should simply return the number of times a particular system call (given as a parameter) has been
called since startup:

• sccount takes 1 parameter — a system call number.

• sccount returns an integer — the number of times the above system call has been called.
You will need some counters to track this.

4 Submitting
First, in your xv6 source directory, run git diff > changes.patch. This collects all the changes
you made to existing xv6 files, but not any new files you might have created. Then you can
run handin to submit as proj1 with changes.patch and any new files you added. These new files
would include sort.c and any additional files for part A, as well as new files you added for xv6. Do
not submit compiled code, generate.c, dump.c, or any xv6 files that you didn’t change. Further,
you should include a "README" file that describes each submitted file and an overall summary
of your changes, both for part A and part B.

4


	Overview
	Programming environment

	Part A: Systems Programming Intro
	Overview
	Helper Program Details
	Hints
	Bonus

	Part B: Xv6 Intro
	Overview
	Getting and building xv6
	Project details
	Bonus

	Submitting

