
COMP 340 Analysis of Algorithms

Problem Set 3
Assigned: February 21, 2020 Due: March 02, 2020

Always provide explanations and show as much work as possible. Solutions to TADM’s odd-
numbered exercises are available at http://www.algorist.com/algowiki/index.php/The_Algorithms_
Design_Manual_(Second_Edition). Designing algorithms often involves some creativity, so start
early and work consistently. If you are stuck on a problem, move on and come back to it. If you get
stuck again, discuss it with your classmates and/or come see me in office hours.

1. In the reduction design technique1, you solve a problem by seeing that it is actually some
other (solved) problem expressed in a different way. You use the algorithm for the solved
problem, and perhaps a few other simple steps, to get the solution to the original problem.

In the order statistics problem you are given a sequence of n (unsorted) values and an integer
k ∈ [1, n] and must return the kth-smallest value. Give an algorithm for the order statistics
problem by reduction to sorting.

2. Consider the following knapsack variants:

(a) Given a set of integers S = {s1, s2, . . . , sn} and a positive integer k, return a subset
whose sum is at least k, or the empty set if no such set exists.

(b) Given a set of integer S = {s1, s2, . . . , sn} and a positive integer k, return a subset that
sums to the highest possible value ≤ k.

You are given an algorithm A that solves the first variant in time TA(n). Use this algorithm
as a black box2 to solve the second variant in time O(TA(n) · log k). Analyze its running time
and briefly explain (a formal proof is not necessary) its correctness.

3. The following questions involve the “Stock market” problem and comes from a parallel algo-
rithms course at WUSTL3:

The problem with the stock market is that, while it is possible to make a great deal
of money buying and selling stocks, it’s easy to lose even more. The long-standing—
if somewhat unhelpful—maxim to make more money than you lose is “buy low, sell
high.”
The stock market problem is finding the best opportunity to follow this advice: for
any sequence of integer prices, where the index in the sequence represents time, find
maximum jump from an earlier price to a later price. For example, if the sequence
of prices was

〈40, 20, 0, 0, 0, 1, 3, 3, 0, 0, 9, 21〉

then the maximum jump is 21, which happens between the price at time 2 and time
11. More formally, the stock market problem is to compute

max{sj − si | 0 ≤ i ≤ j < |s|}

Note that this maximum is only well defined if there is at least one element in s.
1Not to be confused with the reduce algorithm.
2In other words, you may call a procedure/function A(S, `) that runs algorithm A on S with k = `. You may call

A as many times as you wish (provided you satisfy the time bound) and choose ` each time.
3Washington University in St. Louis

http://www.algorist.com/algowiki/index.php/The_Algorithms_Design_Manual_(Second_Edition)
http://www.algorist.com/algowiki/index.php/The_Algorithms_Design_Manual_(Second_Edition)

(a) Give a brute force algorithm for the Stock market problem. Analyze the runtime.

(b) Give a parallel divide-and-conquer algorithm for this problem.

(c) Analyze the work AND span of your divide and conquer algorithm.

(d) Prove your divide and conquer algorithm is correct.

4. You are given a sorted array A of n numbers. Give a parallel algorithm to remove duplicates —
copy the unique numbers to a new array of size n′, where n′ is the number of unique numbers
in A. Analyze the work and span of your algorithm. Hint : Use prefix sums.

For full credit your algorithm should have work O(n) and span O(log n) assuming a scan
(prefix sums) algorithm with span O(log n).

2

