
COMP 340 Analysis of Algorithms

Problem Set 4

Assigned: February 28, 2018 Due: March 23, 2018

Always provide explanations and show as much work as possible. Designing algorithms often
involves some creativity, so start early and work consistently. If you are stuck on a problem, move
on and come back to it. If you get stuck again, discuss it with your classmates and/or come see me
in o�ce hours.

1. What is the expected maximum value of throwing two dice?

2. Peer-to-peer systems on the Internet often grow by linking arriving participants into the
existing structure. Here's a simple model of network growth for these systems. We begin
with a single �node� v1. When a new node joins (one at a time), it chooses an existing node
uniformly at random and links to this node.

Consider running this procedure until we have n nodes v1, v2, . . . , vn. Then we'll have a directed
network in which every node other than v1 has exactly one outgoing edge, but perhaps many
incoming links (or perhaps none at all). If some node vj has many incoming links, it may
have to deal with a large load. For example, it may need to handle lots of users uploading the
hottest new movie. We'd prefer all nodes to have a roughly equal number of incoming links.
Let's quantify the imbalance.

(a) What is the expected number of incoming links to node vj in the resulting network? Give
an exact formula in terms of n and j, and also try to express this quantity asymptotically
(via an expression without large summations) using Big-O notation.

(b) Given the above process, we expect that some nodes will end up with no incoming links
at all. Give a formula for the expected number of nodes with no incoming links.

3. We know that binary search trees do not perform well in the worst case unless we balance
them. What about in the average case? Consider inserting n items into a BST, all drawn
independently and uniformly at random from some suitable range. Give a recurrence relation
C(n) for the average (expected) number of recursive calls required (in the standard BST insert
algorithm) to insert n elements. You do not need to solve this recurrence.

Hint: All inserts pay the initial call that compares to the root. The root is the jth smallest
element with probability 1/n, which determines how many elements will go left and how many
will go right.

4. Give an O(n) algorithm to compute the mode of an unsorted array of n numbers.

5. TADM 4-17.

6. TADM 4-18.

7. TADM 4-31.


