
COMP 325 Programming Languages

Program 3B (Interpeter 2B)

Assigned: October 11, 2021 Due: October 20, 2021 by 11:59 PM

This assignment is optional. If you're satis�ed with your interpreter 2 score, then you can skip this

and keep that score.

There were lots of problems in the second interpreter (third program) and understanding that

material, both conceptually and in terms of Pyret-based language implementation, is vital to your

long term success in this course. So, you have the chance to recoup some lost points. You'll be given

a reduced set of expressions de�nitions for which you must write the appropriate parser, desugarer,

and interpreter.

Interpreter 2 will be graded out of 40 possible points. By doing this assignment you can add at

most 10 to that score.

Details

I am again giving you some starter code, but this time it's just data de�nitions. You are given an

ExprExt and ExprC and a few other things. You can add other data de�nitions as necessary, but do

not modify the ones I give you.

You need to build a parser, desugarer, and interpreter for a language that uses those data

de�nitions. You are free to de�ne the functions you need as necessary, with one exception (de�ned

below).

A program in this language consists of a list of function de�nitions, one of which must be �main�

(à la C).

Requirements

� You must have a function named �run� which takes in a string (the program) and a list of

arguments. It should produce the �nal output of calling �main� with those arguments, i.e., it

reads the S-expression, parses, desugars, and interprets.

� Have complete test coverage, including testing for runtime errors. Don't forget about applying

a function to too many or too few arguments!

� Your interpreter must be environment-based, not substitution-based.

� andExt and orExt should ultimately reduce to ifC. Notice the di�erence here!. You need

to properly carry about short-circuiting semantics.

� The multi-branching condExt should reduced to nested ifC expressions. Pay attention to the

preconditions on the structure of the conditional's list of clauses. You are free to decide the

top-level syntax for this as long as something parses into condExt, which later desugars into

ifC.

� For full credit, I want you to use Pyret's higher-order functions like map and maybe even fold

wherever possible. This would mean that you shouldn't be doing your own recursion on Lists.

You can still get most of the points without this, but I think it would be most instructive if

you did.


