
COMP 325 — Interpreter 4
Stateful Lists

Fall 2019

Abstract

For your fourth interpreter you get to skip the parser and work solely on the desugar and interp
functions. We’ll also set aside the user-interface to the language and not worry about how language users
interact with these core functions. This includes ignoring the presence of top-level definitions. Your only
concern is the desugaring and interpretation of expressions.

The main feature you’re exploring with this assignment is the extension of the mutable box idea to a
mutable pair. This extension allows us to capture the basis of mutable Lisp-like lists and linked-list like
structures in general. Welcome back data-structures!

Expressions

The language should support the following expressions in the extended language.

• Binary Arithmetic Operators: +,*,-,/,modulo

• Numeric Comparison: ==, <, >

• Boolean Operators: and,or,not (binary and and or. unary not)

• Basic if expression

• First Class, n-ary Functions: lambda expressions

• A local expression that is equivalent to letrec with multiple identifier bindings, i.e. it allows multiple
(possibly) recursively local identifiers. Note that each recursive identifier can refer not only to itself,
but also to one or more of the other recursive identifiers being defined.

• A null-type value NIL

• A mutable cons cell with the following:

– car to select the first, and cdr to select the second

– set-car to modify the first, and set-cdr to modify the second

• is-cons predicate to determine if a value is a cons cell or not

• is-null predicate to determine if a value is null or not

Semantics

Not much new is happening with the numeric and boolean operators other than adjusting for store-based
interpretation. Use desugaring where possible and be certain that boolean operators short circuit. Functions
in this language are strict in the number of arguments that they can take. No currying, no partial evaluation,
n-ary functions in the core. The local expression is exactly the same as letrec and should similarly be
desugared down to a single identifier binding form in the core. The cons pair is a natural extension to two
elements of the single element box we studied in class. More details about cons are given below.

The interpreter should continue to use the environment to manage identifier scoping issues but now
manage value storage and mutation through the store as discussed in chapter 31 and in class. Logically
independent tests should not have any kind of dependency due to the store/state implementation.

1

Cons and Lists

In our language, a cons cell is a mutable pair. By including a null-typed value, NIL, along with this
structure, we provide programmers the tools necessary for linked-list like data. The names we’re choosing
here are, as you know from the Lisp History paper, historical. The high-level semantics of each operation is
discussed here, just in case you need a bit of a nudge or refresher:

• A null type value can be used as a stand in for an empty list. In this language, that is it’s only
use we’ll consider. Historically, the keyword NIL is used to express a null type value. The is-null

predicate recognizes a null type.

(is-null NIL) is true

• The cons constructor function takes two arguments and builds a pair from them. So (cons 1 2) is
the pair containing 1 and 2. The predicate is-cons recognizes a cons cell type value.

(is-cons (cons 1 2)) is true

(is-cons 1) is false

(is-cons false) is false

(is-cons NIL) is false

• The selectors car and cdr are the equivalent of unbox.

(car (cons 1 2)) is 1

(cdr (cons 1 2)) is 2

• The mutators set-car and set-cdr are the equivalent of setbox

(local ((c (cons 1 2)))

(begin

(set-car c 4)

(car c)))

is

4

(local ((c (cons 1 2)))

(begin

(set-cdr c 4)

(cdr c)))

is

4

Big-Picture Test

To do some big picture tests write up the following expression/program in its own check block and test that
it produces the correct value.

(local ((sum (lambda (lst)

(if (is-null lst) 0

(+ (car lst) (sum (cdr lst))))))

(sum (cons 1 (cons 2 (cons 3 (cons 4 NIL))))))

Consider writing up some similarly classic list-based programs (an instance of a map, other folds, a mutation-
based for-each, etc.) as tests as well or use them to tease out unit tests for the interp and desugar functions
and their helpers. Just because you’re not building a complete system doesn’t mean the end goal can’t and
shouldn’t inspire you and inform your work.

2

Logistics

For this assignment you only need to write the expression desugarer, interpreter, and any necessary helpers
for those functions. No parser, no top-level definition handlers, no user-interface (i.e. run) function. The
completed assignment is due on 11/19. The grade is determined as follows:

Area Points
Interp 25
Desugar 20
Data Definitions 10
Big Picture Test 5
Style and Comments 5

65 total

You are expected to have all required expressions represented in all parts of your design. If it’s not there
and at least stubbed, then you lose points. At this point we should be able to lay out the skeleton of top
level cases. Sufficiency of testing is covered for the section your testing. The core language should be as
minimal as possible without going overboard. The quality of your sugar versus non-sugar choices will be
evaluated as part of your Data Definitions grade. The style and comment part of your grade accounts for
good coding practices like proper indentation, avoiding printed line wrapping, good identifier and function
names, documentation, and commenting of logic.

3

