
COMP 325 — Interpreter 3
Functional Programming

Fall 2019

For your third interpreter you’ll be implementing a purely functional language for basic numerical com-
puting.

Expressions

The language should support the following expressions.

• Binary Arithmetic: +,-,*,/,modulus

• Numeric Comparison: ==, <. >, <=, >=

• Boolean Operators: and,or,not (binary only. standard unary not)

• Conditionals: if and cond

• First Class, n-ary Functions: lambda expressions

• let and multi-binding let*

We’ve covered most of these in class so there isn’t much new here.

Programs

Users write programs in the language using the familiar main function paradigm. The program is a series
of top-level function and constant definitions. Within that set of definitions there should exactly one named
main which is the program executed by the run-time system (i.e. Pyret). Arguments to the program can
be passed from the “CLI”. To simplify matters we’ll only allow numerical or boolean arguments, no passing
functions from the command-line.

Semantics

The language utilizes some now familiar semantics as well as something new: currying. Functions should use
eager argument evaluation and have statically scoped identifiers. All operators have run-time type checking
and boolean operators should short circuit. The new semantic element allows us to leverage statically scoped
closures in such a way that function semantics are reduced to unary functions.

Currying Functions

Currying reduces n-ary functions to a series of nested unary functions. For example,

(def (foo a b c)

(+ a (+ b c)))

Would curry to

1

(def (foo a)

(lambda (b)

(lambda(c)

(+ a (+ b c)))))

Which is equivalent to

(def foo

(lambda (a)

(lambda (b)

(lambda (c)

(+ a (+ b c))))))

This does a couple of things. First, it allows for the desugaring of n-ary functions. Second, it enables
a rough equivalent partial evaluation of n-ary functions. With partial evaluation, users can pass m fewer
than n arguments to the function and effectively get the (n − m)-ary function back in which the first m
arguments of the original function are bound. For example passing 5 and 2 to foo results in the equivalent
of this function.

(def addseven

(lambda (c)

(+ 5 (+ 2 c))))

When currying is at play, the result isn’t, strictly speaking, a partially evaluated function because the
return value is a unary function. Doing a partial evaluation of foo the ternary function with a single argument
would result in a binary function. When we first curry foo we get a unary function, which returns a unary
function. For example, (foo 5) gives the equivalent to these two results:

partial eval

(lambda (b c)

(+ 5 (+ b c)))

curried foo

(lambda (b)

(lambda (c)

(+ 5 (+ b c))))

If currying turns all functions into unary functions then not only do we need to rewrite function definitions,
but we need to rewrite function applications. When foo is curried as show above then (foo 1 2 3) needs to
be rewritten as (((foo 1) 2) 3) so that the arguments are bound to the same identifiers they would have been
had the function not been automatically curried.

Logistics

The completed interpreter is due by 11:00 AM on Friday 11/01. The sections of the interpreter are
graded differently this go around. Adjust your work habits accordingly.

Area Points
Desugar 25
Interp 20
Parse 15
Data Definitions 10
Style and Comments 5

75 total

2

You are expected to have all required expressions represented in all parts of your design. If it’s not there
and at least stubbed, you will lose points. At this point we should be able to lay out the skeleton of top
level cases. Sufficiency of testing is covered for the section your testing. The core language should be as
minimal as possible without going overboard. The quality of your sugar versus non-sugar choices will be
evaluated as part of your Data Definitions grade. The style and comment part of your grade accounts for
good coding practices like proper indentation, avoiding printed line wrapping, good identifier and function
names, documentation, and commenting of logic.

3

