
COMP 210: Object-Oriented Programming Lecture Notes 9

Compression Codes

Based on notes by Logan Mayfield

In these notes we look at a useful application of trees: compressing
text.

An Application of Trees: Codes

Now we know how to talk about trees, but what do we do with
them? Let’s say you send a letter to your friend and it’s 10,000 char-
acters long. If this letter is encoded in ASCII or UTF-8, then each
character requires 1 Byte to encode and the letter clocks in at 10kB1. 1 assuming its plain text of course

Could we do better in terms of message size?
One option would be to define another fixed length encoding

scheme that uses fewer than 8 bits per character. If your letter uses
N <= 2n characters with n < 8 then you could simply devise
your own scheme using that number of bits. Another option would
be variable length encoding. Basic engineering tells us to optimize
the common case. If we could devise a code system where highly
frequent characters had shorter codes then we might be able to do
even better. Given that natural language character frequencies are far
from uniform, we have high hopes that our letter has a really nice
variable length encoding scheme.

Variable length encoding schemes have a few problems not the
least of which is figuring out where one letter stops and one starts
without doing some costly computation.2. To avoid this problem we 2 Fixed length codes do not suffer this

problem. You simply read in fixed sized
increments

need a prefix free code. In prefix free codes, no one code is a prefix for
another code. For example, if 010 is the code for a, then 010 cannot
occur at the start of any other character code. If we guarantee this
property then reading encoded messages is unambiguous. If you
read 0 then 1 then 0 you must have just read a because no other code
could possibly start that way. A prefix free code could have variable
code lengths for each character and seems to provide a means of
solving the where one character ends and another begins problem.
So, let’s look at the problem of how one generates such a code before
we worry about the compression part.

I’ll begin with what seems like an obvious statement about binary
tree paths. Take a moment to convince yourself that it must be true3. 3 bonus if you prove it mathematically

The path from a tree’s root node to one of its leaf nodes is not a sub-
path for any other path in the tree.

Given that each path terminates at the leaf, then no other paths fol-
low the leaf and the path to the leaf is obviously not a subpath for
something else. Now what if paths somehow represented character
codes? Then sub-paths must be prefixes and this statement is equiva-
lent to saying:

comp 210 notes 9: compression codes 2

The code represented by a path from the root to a leaf node is not the
prefix of another other code.

To turn this into a workable coding system we simply place our
characters in the leaves of a tree. Codes are then formed by starting
at the root of the tree, reading a 0 each time we go left and a 1 when
we go right4. When a leaf is reached then the binary code we’ve read 4 or the other way around

is the code for that character. Let’s say we had three letters: a, b, and
c. One possible variable length, prefix free code for this alphabet
would be represented with the tree given in figure 1.

a

0

b

0

c

1

1

Figure 1: Code as Tree. a = 0, b = 10, c =
11.

We’ve now reduced prefix-free code production to a simple binary
tree construction problem. The trick is to construct the right tree.
Clearly there are lots of different trees we could construct for any
given alphabet. In fact, we can even make a fixed length code from a
tree. Figure 2 gives a code-as-tree encoding of a fixed length code for
our a, b, and c alphabet.5. 5 In fact, figure 1 implies that ASCII can

be represented by a tree of height 8. Do
you see how?

a

0

b

1

0

c

0

1

Figure 2: Code as Tree. a = 00, b = 01, c
= 10.

Let’s step back a second now. Fixed length codes correspond to
complete or full binary trees. What about variable length prefix-free
codes? It’s hard to say as they seem much more flexible. However, if
our goal is short code lengths then what we might be looking for is
something balanced and shallow or at least just shallow.

Huffman Codes

David Huffman devised a method to construct variable length, prefix
free codes that minimized the length of the encoded message and
proved that his code was optimal for all such codes 6. What Huffman 6 D.A. Huffman. A method for the

construction of minimum-redundancy
codes. Proceedings of the IRE, 40(9):1098–
1101, Sept 1952

did was effectively construct a tree based on the probability of each
character from the alphabet occurring. For compressing a single

comp 210 notes 9: compression codes 3

message we can swap out relative frequencies for probabilities and
get maximal compression for that document.

The tree that results from Huffman’s algorithm is called a Huffman
Tree. It’s pretty much the exact kind of tree-based representation of a
code we looked at before but adjusted to support the algorithm for
constructing it.

• Leaf nodes represent letters

• All nodes have a numerical weight associated with them. For leaf
nodes, that weight is the probability/relative frequency of the
letter it represents. For non-leaf nodes, the weight is the sum of
the weights of its subtress.

Huffman’s algorithm employs a greedy strategy. We begin with the
collection of all the leaf nodes. We then repeat the following pro-
cess until the collection contains a single tree: remove the two least
weighted trees, construct a new tree with these threes as the subtrees,
and insert that tree back into the collection. The tree that results is
the Huffman tree for your code.

Let’s do toy example before we go further. Table 1 lists a simple
three letter alphabet and the relative frequency of each letter.

letter frequency
a .38

b .05

c .57

Table 1: A simple three letter alphabet
with frequencies

The formation of a Huffman Tree for our toy alphabet is shown in
figure 3. The algorithm requires two iterations of Huffman’s process
to complete.

The code produced by this tree is given in table 2.

letter code
a 01

b 00

c 1

Table 2: A Huffman code for the simple
three letter alphabet given in table 1

Huffman proved that his code is optimal, that it minimizes the ex-
pected length of the message it’s encoding compared to any code that
existed at the time and that will ever exist. What’s clear is that path
length is important and that the shorter the path the better. Thus,
if we start understand general relationships between the number of
nodes or leaves and a tree and potential tree heights we can start to
get a better understand of how and why trees are useful in solving
problems.

Structure and Its Implications

Looking at coding, Huffman codes, and trees has shown us that
trees can help us solve problems by embedding problem logic in

comp 210 notes 9: compression codes 4

Intial Collection
Three Singleton/Leaf Nodes c,.57 a,.38 b,.05

One Iteration
Combined a & b

c,.57

.43

b,.05 a,.38

Two Iterations
Combined c & the .43 tree

1.0

.43

b,.05 a,.38

c,.57

Figure 3: Huffman’s Algorithm Exam-
ple

the structure of a tree. It follows then that understanding certain
properties of tree structures lets us understand properties of the
process/problem represented by that tree. Much of what we need or
want to know boils down to questions relative to size and height. For
example, if you want to know the minimum length of a fixed length
code for an alphabet with n symbols then you could just figure out
the minimum height possible for a tree with n leaves. This leads to a
series of questions about the relationships between size, number of
leaves, and height.

1. What’s the min height for a tree with n leaves? What’s the min/-
max number of internal nodes for such a tree?

2. How many nodes can a tree of height h contain? How many
leaves?

3. What’s the min/max path length for a tree containing n nodes?
What about n leaves?

Let’s begin with a constrained version of one of the more basic
questions: how many leaves are on a full tree of height h?. This question
sets some very useful bounds on the number of leaves as full trees
maximize leaves relative to height7. To make things easy we’ll start 7 can you see why? could you prove it?

with the trivial cases and work up for a bit to find a pattern. The
super-trivial case is the empty tree: there are no leaves on an empty
tree nor does an empty tree have any height to speak of. A tree of
height 0 is just a singleton and it is trivially a leaf. To increase the
height to 1 and keep the tree full we add two children to that one
node and get 2 leaves. For height 2 we add two children to each of
those nodes obtaining 4 leaves. All these trees are shown in figure 4.

comp 210 notes 9: compression codes 5

Figure 4: Full Trees of height 0, 1, and 2

The doubling of leaves is clearly going to continue and the un-
derlying pattern is the familiar powers of 2. Now what about size?
What’s the size of these trees? Again, let’s just count up from simple
cases and see if we see a pattern. The singleton tree is obviously size
1. A full tree of height 1 is the root and two children, so 3. Next, for
height 2 we add to that three 4 children for a size of 7. At height 3

we add 8 children to the 7 nodes of the height 2 full tree for a total
of 15 nodes. Do you see the pattern? What if you added 1 to each
of these numbers? You have {2, 4, 8, 16}. The size seems to be one
less than 2h+1. What you just solved intuitively is the following well
proposition about a series:

Proposition 1.
h

∑
i=0

2i = 2h+1 − 1

Proof. The proof follows by induction on h. For h = 0 we see 20 = 1

and 21 − 1 = 1 so the base case holds. We now prove that if
k
∑

i=0
2i =

2k+1 − 1 for k ≥ 0, then it will also be true for k + 1.

k+1
∑

i=0
2i = 2k+1 +

k
∑

i=0
2i

= 2k+1 + 2k+1 − 1

= 2(2k+1)− 1

= 2k+2 − 1

This is equivalent to 2(k+1)+1 − 1 and so by mathematical induction
h
∑

i=0
2i = 2h+1 − 1 for all h ≥ 0.

We now know some important properties about the number of
leaves and total nodes for full trees. These are captured in table 3.

comp 210 notes 9: compression codes 6

height Num. Leaves Size
empty 0 0

0 1 1

1 2 3

2 4 7

3 8 15

.
h 2h 2h+1 − 1

Table 3: Properties of Full trees

From here we can relax our thinking a bit and look at complete
trees. For a complete tree of height h there is a full tree of height
h − 1 and one of h that give us lower and upper bounds for leaves
and size. Let’s just look at all the complete trees of height 2 as shown
in figure 5. We exclude from this list the full tree of height 2 as we’re
interested in trees that are complete but not also full.

Figure 5: All the Complete Trees of
height 2

First lets address the number of leaves question for complete trees.
In the minimal case we seem to simply swap one leaf at h for a leaf
in the full tree at h − 1. So the lower bound for number of leaves is
2h−1. The upper bound has one fewer than the full tree at h so we’re
looking at 2h − 1. Looking at tree sizes is also straight forward. On
the low end we have 1 more node than a full tree at height h− 1, or
2h and on the high end one less node than a full tree at height h, or
2h+1 − 2. Finally, it’s worth noting that there are no binary trees of
height 0 that are full but not complete.

So why all this fuss over full and complete trees? The full binary
tree maximizes size and leaves while minimizing tree height. You
cannot have any more nodes in a depth h tree than you do in a full
tree. Complete trees do something similar but for height balanced
trees. You cannot have any more nodes in a height balanced tree than
you do in a complete tree that’s one node shy of being full. Now

comp 210 notes 9: compression codes 7

height min leaves max leaves min size max size
1 1 1 2 2

2 2 3 4 6

3 4 7 8 14

.
h 2h−1 2h − 1 2h 2h+1 − 2

Table 4: Properties of Complete (but not
full) tree

remember that tree height sets the upper bound on path length. It’s
the path length that we’re often most interested in. Huffman wanted
a short expected path length to maximize the compression of the
message. In lots of cases we just need a short upper bound on paths.
Understanding the path length properties of complete and full trees
thereby lets us understand some well behaved cases.

Now we flip all of these problems around. Given a full tree of size
n, what’s the height of the tree. We know that n is exactly 2h+1 − 1 so
all we need to do is solve for h

2h+1 − 1 = n
2h+1 = n + 1

log2(2
h+1) = log2(n + 1)

h + 1 = log2(n + 1)
h = log2(n + 1)− 1
h = O(log n)

It’s important to note that for a full tree of n nodes the quantity
n + 1 is an exact power of two so our heights will always come out
an exact integer value. Let’s just test this with a concrete example. A
full tree of height 3 has 23+1 − 1 = 15 nodes and log2(15 + 1)− 1 =

log2(16)− 1 = 4− 1 = 3. When n is the number of leaves in a full
tree then we know n = 2h and the height is clearly log2 n. What have
we learned? The height of a full tree is on order the logarithm of its
size or the number of its leaves.

What about a complete tree of size n? We know n must between 2h

and 2h+1 − 2. When n is the minimum size, then the height is log2 n,
but what about when it’s not the minimum? We know for certain
that it will not reach the next power of 2 without actually increasing
the height of the tree so the simply solution is to simply take the log
and round down to the nearest integer, blog2 nc.

Priority Queues, Heaps, and Huffman’s Forest

If my alphabet contains n characters, then I’ll need n − 1 iterations
of Huffman’s process to get the final Huffman tree. Each iteration
selects the minimum tree from the forest twice, constructs a new tree,
and inserts that new tree back to the collection. If we want this pro-
cess to be efficient, then we need those operations to be efficient. It
doesn’t take much to see that tree construction is take O(1) opera-
tions8. The real trick9 is having efficient operations for our collection. 8 just assign pointers for left and right

along with the new root’s value
9 it often is

comp 210 notes 9: compression codes 8

References

[1] D.A. Huffman. A method for the construction of minimum-
redundancy codes. Proceedings of the IRE, 40(9):1098–1101, Sept
1952.

	An Application of Trees: Codes
	Structure and Its Implications
	Priority Queues, Heaps, and Huffman's Forest

