
COMP 210: Object-Oriented Programming Lecture Notes 8

Trees and Tree Traversals

Based on notes by Logan Mayfield

In these notes we look at Binary Trees and how to traverse them.

Binary Trees

Imagine a list. Now instead of every non-empty list having a single
next list, what would happen if you allowed two nexts? What you’d
have is a binary tree like the one seen in figure 1.

A

B

C D

E

F

G

H

Figure 1: A Binary Tree

Great. Let’s define this kind of structure using a PDA. If we keep
the natural base case of an empty tree then we get a simple extension
of a list.

<<interface>>

BinTree

MTBinTree BinTreeNode
root : Foo
left : BinTree
right : BinTree

Foo

Figure 2: A Binary Tree of Foo Objects

If we wanted, we could then redraw our example tree to show
the empty trees as shown in figure 3. This new diagarm gives us a
pretty good feel for the actual structure of a BinTree object where the
previous diagram1 highlighted the logical structure of the tree. 1 figure 1

It makes sense that the explosion of “nexts” leads to an explosion
of empty trees. It’s often convenient to work with another base case,
the singleton tree. There’s no reason we can’t have two base cases, so
let’s add this variant of a binary tree to our previous design. The new
PDA design given in figure 4 allows both empty an singleton base
cases. It’s not yet clear if this is helpful or just extra work, but just

comp 210 notes 8: trees and tree traversals 2

A

B

C D

E

F

G

H

Figure 3: A Binary Tree with Empty
Trees shown

drawing simple diagrams shows this might be a nice capability to
have as the tree given in figure 5 both covers the complete structure
and minimizes the need for a large number of empty trees.

<<interface>>

BinTree

MTBinTree

BinTreeNode
root : Foo
left : BinTree
right : BinTree

Foo

SingletonTree
root : Foo

Figure 4: A Binary Tree of Foo Objects
with Two Base Cases

A

B

C D

E

F

G

H

Figure 5: A Binary Tree with Empty
Trees shown

At this point, it’s worth imagining how the tree shown in figure
5 might be constructed in Java. For the sake of simplicity, we’ll just
assume the letters in each circle correspond to the name of some Foo
variable.

comp 210 notes 8: trees and tree traversals 3

BinTree atree =

new BinTreeNode(A ,

new BinTreeNode(B , new SingletonTree(C), new

SingletonTree(D)),

new BinTreeNode(E ,

new BinTreeNode(F, new SingletonTree(G), new MTBinTree()),

new SingletonTree(H))

);

Figure 6: The tree in figure 5 as a Java
BinTree

So we have some foothold into the world of trees now. We can
define them as recursive class hierarchy and could easily start imple-
menting functionality for that hierarchy so that we could play around
with Binary Trees. Before we do that we really should first look at
trees in a much broader context and find something interesting to do
with trees.

Binary Tree Traversal

Traversing a list is fairly straight forward. From the recursive per-
spective you either recurse on the rest then deal with the first or your
deal with the first then recurse on the rest. If we were computing the
size of a list that might look like the snippets we see in figure 7.

// first, then rest

return 1 + this.rst.size();

// rest, then first

return this.rst.size() + 1;

Figure 7: Recursive List Traversal for
size

To generalize these patterns we talk about what we do for the first
as visiting the current node of the list. A little analysis shows that
visiting then recursing will visit nodes in first to last order while
recurse then visit will visit in last to first.

With trees we don’t just have one recursively defined field but two:
the left and right. What are we to do? The answer is simple, pick a
permutation of visit (v), go left (l), and go right (r). There are six such
permutations: vlr, lvr, lrv, vrl, rvl, and rlv. To simplify matters we
only consider permutations where l comes before r. This leaves us
with the three depth first traversal patterns.

1. Preorder Traversal: v l r

2. Inorder Traversal: l v r

3. Postorder Traversal: l r v

The names are derived from the placement of the visit within the

comp 210 notes 8: trees and tree traversals 4

permutation. In figure 8 we see how each of these patterns could be
used to find the size2 in a tree. 2 number of non-empty nodes

// preorder

return 1 + this.left.size() + this.right.size();

// inorder

return this.left.size() + 1 + this.right.size();

//postorder

return this.left.size() + this.right.size() + 1;

Figure 8: Recursive Binary Tree Traver-
sal for size

If you wanted to carry these processes out using an iterative loop
then you’d need the assistance of a data structure that you studied in
COMP220

3. We’ll save that task for another time. Right now it’s more 3 a stack

important to understand the order in which we’ll visit a tree’s nodes
when doing each traversal. For our example tree from figure 5 we’d
do the visit orders shown in table 1.

Pattern Visit Order

Preorder (vlr) A B C D E F G H

Inorder (lvr) C B D A G F E H

Postorder (lrv) C D B G F H E A

Table 1: Traversal orders for the tree in
figure 5

Doing these traversals by hand is wonderful practice for thinking
through recursive a process. Just like some problems with lists neces-
sitate a last to first traversal and some first to last, there will be tree
problems that require different orders for visiting.

Talking Trees

Trees have been studied in mathematics for a long time and have
found use in computing for as long as there has been computing.
This means there is a lot of terminology to go along with trees. Much
of it pulls from one of two metaphors, family trees or trees in nature.

• Tree Structure

– Node A non-empty tree structure containing a single element
and a left and right subtree.

– Edge The connection between a Node and one of its subtrees.

– Path A linearly connected set of nodes
In our example tree, there is a path from the node containing A
to the node containing G through the nodes E and F.

comp 210 notes 8: trees and tree traversals 5

– Root Node The Root node of a tree is the “first” node in that
tree.
A is the root of the tree shown in figure 5. It’s left subtree is
rooted by the node containing B and its right subtree is rooted
by the node containing E.

– Child Node The root node of a node’s subtree.
The node containing B is a child of the node containing A.
Children of children and further down are called descendents.
The node containing G is a descendent of the node containing
E but the node containing D is not a descendent of the node
containing E.

– Parent Node The node of which a given node is a child.
The node containing A is the parent of the node containing B.
Notice the root of a tree has no parent. Parents of parents and
so on up the tree are called ancestors. The node containing E
is an ancestor of the node containing G but not of the node
containing D.

– Leaf Node A node with no children
These nodes are the bottom most layer of a tree. They’re what
we call the singleton tree and an alternate base case to the
empty tree. The nodes containing C, D, G, and H are all leaf
nodes. All other nodes are internal nodes because they have at
least one child.

• Properties of Trees and Nodes

– Node Depth The number of edges from a given node to the
tree’s root node.
The root of a tree always has a depth of 0 and from there depth
increases by one with each level.

– Node Height The number of edges on the longest path from a
give node to a leaf node.

– Tree Height The height of the tree’s root node.
This property is the tree analog of list length.

– Tree Size The number of nodes in the tree.
Our example tree has a size of 8.

• Classes of Binary Trees

– (Height) Balanced Binary Tree A tree in which the height
of the left subtree and the height of the right subtree differ by at
most one.
Our example tree given in figure 5 is height balanced because
the left subtree has a height of 1 and the right subtree has a
height of 2.

– Complete Binary Tree A tree of height h where the tree is
full up to depth h − 1 and then at depth h the leaves fill in from
left to right.
Complete trees are height balanced.

comp 210 notes 8: trees and tree traversals 6

– Full Binary Tree A tree where every node except leaf nodes
has exactly two children. // Full trees a special sub-class of
Complete trees where every node at depth h − 1 has two chil-
dren.

We’ve seen a height balanced tree already. Figure 9 shows you a
complete tree of height 2 and figure 10 shows you a full tree of height
2.

A

B

C

E

Figure 9: A Complete Binary Tree of
height 2

A

B

C D

E

F G

Figure 10: A Full Binary Tree of height
2

References

	Binary Trees
	Talking Trees

