
COMP 210: Object-Oriented Programming Lecture Notes 7

Data Structures, ADTs, and PDAs

Based on notes by Logan Mayfield

In these notes we explore the paradigm of designing Procedural Data
Abstractionsand defining recursively structured data. In their current
state these notes are woefully incomplete. For a more complete treat-
ment of basic recursive structures see chapters 5 and 15 in HtDC[3].
For a deeper look at abstractions in this context look at chapters 18 and
19.

Lists and Procedural Data Abstractions

Lists are the classic example of a data structure with a recursive
structure. A list comes in two varieties: empty and not empty. The
empty list is a primitive structure with no contained fields/data.
A non-empty list, which we’ll call a cons list borrowing from the
Lisp/Scheme tradition, has two fields. The first field is a singular
instance of the type contained in a list.1 The second field is a point- 1 For lists of integers, it’s an integer, for

a list of Strings, it’s strings.er/reference to another list. It is this second field that creates a recur-
sive structure: cons lists are composed of a single datum and another
list.

In an object-oriented space we can represent this structure using
a class union and containment. Nothing new is happening, we’re
just making use of existing tools in a new and highly fruitful way.
The raw structure and a standard interface for a list of Foo objects is
given in figure 1. Although it might not be clear why just yet adding
a mutable interface to Lists isn’t possible with this design2. 2 what happens when you remove the

only item from a size one list?

<<interface>>

List
isEmpty() : boolean
first() : Foo
rest() : List
contains(Foo key) : boolean
prepend(Foo fst) : List
append(Foo last) : List
concatenate(List end) : List

MTList ConsList
fst : Foo
rst : List

Foo

Figure 1: A List of Foo Objects

In practice, the Foo class could be a primitive value, an interface-
based type, or any other more concrete/descriptive type than “Foo”.
By embedding the recursive structure in containment and inheritance
we can get the system to manage the necessary “is this list empty or



comp 210 notes 7: data structures, adts, and pdas 2

not” conditionals as part of the Polymorphic method dispatch. Im-
plementing the interface across this union is an exercise in Procedural
Data Abstraction[1, 2].

The first method, as seen in figure 2, is very straight forward for
cons lists as it’s really just a field selector.

// in ConsList

@Override

public Foo first(){

return this.fst;

}

// in ConsList test file

@Test

public void testFirst(){

assertEquals(new Foo(),new ConsList(new Foo(), new MtList()));

}

Figure 2: first for cons lists

On the other hand, figure 3 shows that first for empty lists is an
error. There is no first to select when there is nothing in the list.
Using a generic RuntimeException is not ideal, but works. In practice
you should probably extend RuntimeExecption to create a custom
exception type for List errors. When testing exceptions we need to
add an argument to the annotation and then simply invoke code that
should throw the exception listed in the annotation.

// in MtList

@Override

public Foo first(){

throw new RuntimeException("Cannot select the first of an empty

list");

}

@Test

public void testFirst() {

assertThrows(RuntimeException.class, () -> { new

MtList().first(); }, "message");

}

Figure 3: first for empty lists

The prepend function is also fairly straight forward.
Concatenate is, at first, a bit tricky as we must be certain we ac-

count for the two possible List subclasses that end could be. The
problem, in general, has four logical cases: both are empty, this is
empty while end is not, end is empty while this is not, and neither
is empty. While polymorphic method dispatch fully determines the
type of this, it does nothing relative to the argument types.3 It’s up to 3 some OOP languages will dispatch

based off argument types. this is called
Multiple Dispatch.

us to manage the two sub-cases relative to the type of this.
In the case of concatenate, we find that the logic when end is



comp 210 notes 7: data structures, adts, and pdas 3

// in ConsList

@Override

public List prepend(Foo fst){

return new ConsList(fst,this);

}

// in ConsList test file

@Test

public void testPrepend(){

List l = new ConsList(new Foo(b),new MTList());

assertEquals(new ConsList(new Foo(a),new ConsList(new Foo(b),new

MTList())),

l.prepend(new Foo(a));

}

Figure 4: prepend for cons lists

// in MtList

@Override

public List prepend(){

return new Conslist(fst,this);

}

// in MtList test file

@Test

public void testPrepend(){

List l = new ConsList(new Foo(b),new MTList());

assertEquals(new ConsList(new Foo(a),new MTList()),

new MTList().prepend(new Foo(a)));

}

Figure 5: prepend for empty lists



comp 210 notes 7: data structures, adts, and pdas 4

empty and when it’s not empty can be unified into a single case for
both non-empty and empty this. Figure 6 shows the implementation
for cons lists and figure 7 shows it for empty lists.

// in ConsList

@Override

public List concatenate(List end){

return new ConsList(this.first(), this.rest().concatenate(end));

}

// in ConsList test file

@Test

public void testConcat(){

List l = new ConsList(new Foo(a),new ConsList(new Foo(c),new

MTList()));

List r = new ConsList(new Foo(b),new MTList());

assertEquals(new ConsList(new Foo(a),

new ConsList(new Foo(c),

new ConsList(new Foo(b),

new MTList()))),

l.concatenate(r));

assertEquals(l,l.concatenate(new MTList());

}

Figure 6: concatenate for cons lists

ADT Lists

The recursive structure given above is really a low level implemen-
tation choice. If you need a list or list like container you should be
working with an Abstract Data Type and then using the OO list
structure as the implementation. In figure 8 we see the structure for
a basic ADT list with a linked-list implementation. Notice that the
list methods move up to the ADTList class. Now that the List type is
implementation we no longer are required to provide the standard
list interface. It would make a lot of sense to do so and have ADTList
methods make calls to the logically equivalent method on the con-
tained List. On the other hand, we might opt to check the specific
type of the list to catch special cases in the List logic. For example,
we could skip the call to List concatenate all together if the argument
to the ADTList concatenate is empty. Once again, the design space
between the implementation and the top-level has opened up some
implementation flexibility.

This works perfectly well when you’re certain that the linked-list
implementation provides the performance characteristics you need.
In the event that these characteristics are unknown or that you simply



comp 210 notes 7: data structures, adts, and pdas 5

// in MtList

@Override

public List concatentate(List end){

return end;

}

// in MTList test file

@Test

public void testConcat(){

assertEquals(new MTList(), new MTList().concatenate(new

MTList()));

assertEquals(new ConsList(new Foo(),new MTList()),

new MTList().concatenate(new ConsList(new Foo(), new

MTList())));

}

Figure 7: concatenate for empty lists

ADTList
lst : List
isEmpty() : boolean
first() : Foo
rest() : List
contains(Foo key) : boolean
prepend(Foo fst) : List
append(Foo last) : List
concatenate(List end) : List

<<interface>>

List

MTList ConsList
fst : Object
rst : List

Foo

Figure 8: An ADT List of Foo Objects

want to plan for a more flexible future then we want to inject some
interfaces into this picture. In figure 9 we see a more robust ADT list
structure that defines the main type through an interface and then
sets down two possible implementations: one with an array and one
with a linked-list.

The key observation to make about figure 9 is that different imple-
mentations form a class Union.



comp 210 notes 7: data structures, adts, and pdas 6

LinkedList
lst : List

ArrayList
lst : Foo[*]

ADTList
isEmpty() : boolean
first() : Foo
rest() : List
contains(Foo key) : boolean
prepend(Foo fst) : List
append(Foo last) : List
concatenate(List end) : List

<<interface>>

List

MTList ConsList
fst : Object
rst : List

Foo

Figure 9: An ADT List of Foo Objects

References

[1] William R. Cook. Object-oriented programming versus abstract
data types. In Proceedings of the REX School/Workshop on Founda-
tions of Object-Oriented Languages, pages 151–178, London, UK,
UK, 1991. Springer-Verlag.

[2] William R. Cook. On understanding data abstraction, revisited. In
Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA ’09,
pages 557–572, New York, NY, USA, 2009. ACM.

[3] Matthias Felleisen, Matthew Flatt, Robert Bruce
Findler, Kathryn E. Gray, Shriram Kirshnamurthi,
and Viera K. Proulx. How to design classes.
http://www.ccs.neu.edu/home/matthias/htdc.html, 6 2012.


	Lists and Procedural Data Abstractions
	ADT Lists

