
COMP 210: Object-Oriented Programming Lecture Notes 6

Containment vs. Extension

Based on notes by Logan Mayfield

In these notes we examine a case study in containment vs extension
in order to better understand when to use object containment vs class
extension.

Square

Let’s say we want to add a Square class to the shape hierarchy that
we’ve been developing over the past several sets of lecture notes.
Clearly squares and rectangles are related and we’d like to leverage
that relationship in the design and implementation of the Square
class. When trying to leave our existing code as is, we’re left with
two options: Squares contain rectangles or Squares extend rectangles.
A third option would require some refactoring: Rectangles extend
Squares.

The first gut check we can perform is against the “is-a” relation-
ship. If we cannot say that a subclass “is-a” variant of the superclass,
then extension is not the way to go. This question really isn’t a pro-
gramming question, it’s a question against the logic of our applica-
tion or problem domain. Mathematically, “a square is a rectangle
with width equal to height”. The other direction doesn’t really work.
You never her someone refer to a rectangle as a square because rect-
angles violate parts of the the definition of a square and not the other
way around. At this point we should be happy, as the only reason-
able extension option is the one the extends what we’ve already
done: a Square is-a Rectangle.

Once we’re satisfied that an is-a relationship makes sense in the
problem domain, we need to test the relationship in the program-
ming domain. In programming we require that subclasses be a true
extension of the superclass. This means that the behavior, the in-
terface, of the subclass must be at least that of the superclass. Class
extension is an additive property. You can override existing behav-
ior or define new behaviors or attributes but you cannot/should not
hide behaviors. This is codified in the Liskov Substitution Principle1 1 https://en.wikipedia.org/wiki/

Liskov_substitution_principlewhich states that instances of the superclass should be replaceable
with the subclass without breaking the expected characteristics of the
program.

When we check the Square/Rectangle relationship against Liskov’s
principle we find a problem. Rectangles have two side length at-
tributes and we’d expect the usual set of getters, setters, and con-
structors with respect to those two attributes. Squares on the other
hand have a single side length and should really only have half as
many getters and setters. It would also be redundant and fraught
with problems if the Square class allowed a constructor that ini-
tialized two side lengths. So while the problem logic implies class

https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://en.wikipedia.org/wiki/Liskov_substitution_principle


comp 210 notes 6: containment vs. extension 2

extension, the programming logic doesn’t agree. The solution to our
problem must be containment.

By using object containment we are committing to designing and
implementing the Square as an Abstract Data Type. The rectangle
provides all the implementation we need just not in the form we
need it. By hiding it away as a private data field, we can map it’s
interface to the expected interface of a Square. The next question we
must address is where should Square fit in out hierarchy. Certainly it
should implement Shape, but should it extend AbstractShape?

Extending AbstractShape is problematic. The Square already has
access to a pin location through the contained rectangle and extend-
ing AbstractShape adds a second pin location. This redundancy
could be the cause for error and it’s aesthetically unpleasant. On
top of this, we added the abstract class as an implementation detail
and not to establish a taxonomy of classes. The interface serves the
later purpose and we’ve committed to implementing it with Square.
Square simply don’t directly need the implementation provided by
AbstractShape because it’s captured it indirectly through contain-
ment. If we’re committed to leaving the existing design intact, then
we should simply implement Shape with Square and leave Abstract-
Shape out of it.

Our new Shape hierarchy is shown in figure 1. We’ve lifted the
location accessor and mutator up to the interface as it just seems to
make sense.

Implementing the Square Class

Implementing the Square ADT class is pretty straightforward. All of
the interface methods can be implemented with a call to the equiva-
lent method for the contained rectangle. Figure 2 illustrates this with
the isWithin method2. 2 recall asrec is the contained Rectangle

The remaining methods are only tricky in that with the exception
of equals and hashcode, they cannot be auto generated by Eclipse be-
cause they’re not based on the actual fields of the Square. Figure 3

shows the class constructors. Figure 4 gives the side length accessor
and mutator. Finally, figure 5 provides an implementation of toString
that makes use of the class’ own abstract interface rather than work-
ing through the Rectangle directly. This final strategy makes the
implementation of toString more or less independent of the choice of
representation of the Square.

Recap

The desire to reuse existing code and create more generalized, and
thereby reusable, code often drive program design. In OOP we get
access to a tool that gives us both: class extension. This example il-
lustrates that class extension is not the silver bullet of reusable code
design and that it isn’t always the right choice, even with the problem



comp 210 notes 6: containment vs. extension 3

<<interface>>

Shape
area() : double
isWithin(Loc l)) : boolean
boundingBox() : Rectangle
distanceTo(Loc l) : double
getLocation() : Loc
setLoccation(Loc l) : void

Square
asrec : Rectangle
Square()
Square(int sideLength)
getSideLength() : int
setSideLength(int sideLength) : void

<<abstract>>

AbstractShape
pinloc : Loc
AbstractShape()
AbstractShape(Loc l)

Rectangle
width : int
height : int
Rectangle()
Rectangle(Loc l, int width, int height)
getWidth() : int
setWidth(int width) : void
getHeight() : int
setHeight(int height) : void

Circle
radius : int
Circle()
Circle(Loc l, int radius)
getRadius() : int
setRadius(int radius) : void

Dot

Dot()
Doc(Loc l)

Loc
row : int
col : int
Loc()
Loc(int row, int col)
getRow() : int
setRow(int row) : void
getCol() : int
setCol(int col) : void

Figure 1: Shape Hierarchy with Square
Class

public boolean isWithin(Loc l) {

return this.asrec.isWithin(l);

}

Figure 2: The isWithin implementation
for the Square class

domain implies it might be. When extending classes we must always
remember that we’re not just reusing code, we’re building and ex-
tending hierarchies of types. Liskov’s substitution principle tells us
that subclasses must be replaceable with their superclasses. Adhering
to this principle means that class extension truly is an extension, it’s
an additive process. You can add fields, you can add methods, you
can override methods, but you cannot hide or remove methods or
fields.

Hiding implementation is the bread and butter of class contain-
ment and data abstraction. Initially we use object containment to
capture the logical structure of a class. Shapes contain locations be-
cause all shapes “have-a” location. In implementing the Square class
we utilized a Rectangle not because a square “has-a” rectangle, but
because we could implement the entirety of the square interface with
a restricted set of the rectangle behavior.



comp 210 notes 6: containment vs. extension 4

public Square(){

// unit square at the origin

this.asrec = new Rectangle();

}

public Square(Loc pin, int sideLength){

this.asrec = new Rectangle(pin,sideLength,sideLength);

}

Figure 3: The Square class constructors

public int getSideLength(){

return this.asrec.getLength();

}

public void setSideLength(int sideLength){

this.asrec.setLength(sideLength);

this.asrec.setWidth(sideLength);

}

Figure 4: The Square side length getter
and setter

public String toString() {

return String.format("Square [sideLength=%s, location=%s]",

this.getSideLength(),this.getLocation());

}

Figure 5: The Square class toString


	Square
	Recap

