
COMP 210: Object-Oriented Programming Lecture Notes 5

Class Extension

Based on notes by Logan Mayfield

In these notes we address class extension and implementation inheri-
tance. In doing so we’ll learn about abstract and final classes in Java and
the use of the protected and default access modifiers.

Shared Implementation and Class Extension

When designing and implementing class unions it is not uncommon
to find that several variants in the union have some shared imple-
mentation. For example, all the classes in our Shape union from lec-
ture notes 4 had a Loc field. What’s more the distanceTo and moveTo
methods were dependent only on the location field and therefore
looked the same in each variant in the union. This kind of repetition
is a sure sign that our design could be improved by some abstraction.

In some sense the use of a contained object, the Loc, protects us
from some repetition. If the core logic for the repeated methods
is done by Loc, then the implementation of those methods at the
Shape level can be a simple call to the appropriate Loc method. This
also means that changes to the core implementation of that method
need only take place in a single location, the implementation within
Loc. These points are all well and good, but they don’t prevent the
repetition of code across the hierarchy.

The real fix to this problem comes from a new kind of Class rela-
tionship: Class Extension. When one class extends another then
a hierarchy is established in the same fashion as interface implemen-
tation. The extender, called the subclass is a specific variant of the
extendee, the superclass. Increased specification comes from over-
riding behavior or adding functionality and not through hiding or
restricting existing implementation. In the case of shapes, we’d like
to extract all the pin location details up into a more generic Abstract-
Shape so that we can then extend that class with the elements unique
to each shape.

The AbstractShape class is halfway between an interface and a
concrete class like Rectangle. It captures concrete implementation
details, i.e. that all shapes contain a pin location and distanceTo and
moveTo can be completely specified in this context, and in that way is
like the concrete shape classes. On the other hand, an AbstractShape
is a less specified, more generic type we can associate with our class
union.1. 1 The AbstractShape type is the union of

Dot, Rectangle, and Circle

The Old Shape Hierarchy

Recall our previous design as diagrammed in figure 1. Here we’ve
repeated class method declarations to indicate the point of actual
implementation. We see evidence of shared implementation in this



comp 210 notes 5: class extension 2

design by the repeated containment relationship with Loc and the
repetition of location related functionality. The repetition of the in-
terface declarations is not necessarily evidence of shared implemen-
tation2. Only if the implementation of an interface method is based 2 it obviously means shared behavior!

solely on shared implementation will we be able to abstract it out of
the concrete classes.

<<interface>>

Shape
area() : double
isWithin(Loc l)) : boolean
boundingBox() : Rectangle
distanceTo(Loc l) : double
moveTo(Loc l) : void

Rectangle
pinloc : Loc
width : int
height : int
Rectangle()
Rectangle(Loc l, int width, int height)
getWidth() : int
setWidth(int width) : void
getHeight() : int
setHeight(int height) : void
equals(Object obj) : boolean
hashCode() : int
toString() : String
area() : double
isWithin(Loc l)) : boolean
boundingBox() : Rectangle
moveTo(Loc l) : void
distanceTo(Loc l) : double

Circle
pinloc : Loc
radius : int
Circle()
Circle(Loc l, int radius)
getLocation() : Loc
setLoccation(Loc l) : void
getRadius() : int
setRadius(int radius) : void
equals(Object obj) : boolean
hashCode() : int
toString() : String
area() : double
isWithin(Loc l)) : boolean
boundingBox() : Rectangle
moveTo(Loc l) : void
distanceTo(Loc l) : double

Dot
pinloc : Loc
Dot()
Doc(Loc l)
getLocation() : Loc
setLoccation(Loc l) : void
equals(Object obj) : boolean
hashCode() : int
toString() : String
area() : double
isWithin(Loc l)) : boolean
boundingBox() : Rectangle
moveTo(Loc l) : void
distanceTo(Loc l) : double

Loc
row : int
col : int
Loc()
Loc(int row, int col)
getRow() : int
setRow(int row) : void
getCol() : int
setCol(int col) : void
equals(Object obj) : boolean
hashCode() : int
toString() : String

Figure 1: Shapes Class Hierarchy



comp 210 notes 5: class extension 3

A New Shape Hierarchy

If we go and lift out all of the shared implementation from the Shape
hierarchy and place it in the AbstractShape abstract class, then we’d
end up with the design diagrammed in figure 2. Once again, Shape
interface methods are restated in the class in which they are imple-
mented. With that in mind, we can see that some of the interface
methods can be implemented in the abstract class and some cannot.
This lack of a complete implementation of the interface is precisely
what makes the class abstract in this case.

<<interface>>

Shape
area() : double
isWithin(Loc l)) : boolean
boundingBox() : Rectangle
distanceTo(Loc l) : double
moveTo(Loc l) : void

<<abstract>>

AbstractShape
pinloc : Loc
AbstractShape()
AbstractShape(Loc l)
getLocation() : Loc
setLoccation(Loc l) : void
equals(Object obj) : boolean
hashCode() : int
toString() : String
moveTo(Loc l) : void
distanceTo(Loc l) : double

Rectangle
width : int
height : int
Rectangle()
Rectangle(Loc l, int width, int height)
getWidth() : int
setWidth(int width) : void
getHeight() : int
setHeight(int height) : void
equals(Object obj) : boolean
hashCode() : int
toString() : String
area() : double
isWithin(Loc l)) : boolean
boundingBox() : Rectangle

Circle
radius : int
Circle()
Circle(Loc l, int radius)
getRadius() : int
setRadius(int radius) : void
equals(Object obj) : boolean
hashCode() : int
toString() : String
area() : double
isWithin(Loc l)) : boolean
boundingBox() : Rectangle

Dot

Dot()
Doc(Loc l)
equals(Object obj) : boolean
hashCode() : int
toString() : String
area() : double
isWithin(Loc l)) : boolean
boundingBox() : Rectangle

Loc
row : int
col : int
Loc()
Loc(int row, int col)
getRow() : int
setRow(int row) : void
getCol() : int
setCol(int col) : void
equals(Object obj) : boolean
hashCode() : int
toString() : String

Figure 2: Shapes with an Abstract Class



comp 210 notes 5: class extension 4

Abstract Methods and Classes in Java

The keyword abstract can be applied to methods and Classes in Java.
An abstract method is a method without an implementation, it’s
simply a declaration. All the methods declared in an Interface are
implicitly abstract and public. Figure 3 shows how you could rewrite
the declaration of the area method to include these implicit keyword3. 3 as a matter of style, we don’t do this

//in Shape.java

abstract public double area();

Figure 3: Complete declaration of area
in Shape

An abstract class is a class with abstract methods. That’s it. These
methods can either be introduced by the class or, as is the case in
our example, the abstract methods are interface methods that still
lack an implementation. If you’re working from the perspective of
lifting out shared implementation, then it’s likely you’ll end up with
an abstract class. An important feature of abstract classes is that you
cannot directly construct objects of that type. It’s a compile time
error. The reason for this is simple. As an abstract class its implemen-
tation is necessarily incomplete. Some of the methods are abstract.
This means the compiler cannot guarantee that a all the methods
in that class can be executed. Just like procedural C++ code can’t
compile without definitions for declared procedures, Java code will
not compile if you attempt to instantiate an object from a class with
undefined or abstract methods.

To declare a class abstract simply tack in the abstract keyword as
shown in figure 4. Eclipse has a checkbox for abstract in the New
Class wizard.

//in AbstractShape.java

public abstract class AbstractShape implements Shape{

// Field and Method declaration will go here.

}

Figure 4: Stub Declaration of the
AbstractShape abstract class

Finally, to indicate class extension we use the extends keyword
prior to the interface declarations. Figure 5 shows the new Circle
class definition header line. Technically, the interfaces of the super-
class are inherited by the subclass, so the redeclaration of Shape isn’t
needed, but OK if you need to remind yourself its there.

//in Circle.java

public class Circle extends AbstractShape implements Shape{

// Field and Method declaration will go here.

}

Figure 5: New header line for the Circle
class



comp 210 notes 5: class extension 5

Access Modifiers and Class Extension

As we start using abstract classes and inheritance hierarchies involv-
ing class extensions, we’ll need to think more closely about the access
modifiers. Thus far public has been used for the the user-facing parts
of our design. The stuff that we need to solve our problem. The pri-
vate modifier has been used to hide implementation details like object
data fields and occasionally helper methods.

These basic permissions still apply between subclass and super-
class. The private elements of a superclass are not accessible to the
subclass or anywhere else. Public methods and fields in a supper
class are not only accessible within the subclass but can be access
outside of the hierarchy through the subclass. So while AbstractShape
will contain the implementation of distanceTo, we can still invoke that
method from an object of type Circle. After all, all subclass are also
instances of their superclass with added functionality.

Circle acirc = new Circle(new Loc(5,2),4,3);

// even though there is no listed

... acirc.distanceTo(new Loc()) ...

Figure 6: Superclass public method
invocation from subclass objects

Essentially what happens is when a method is invoked on an
object, the runtime system first checks the object’s class for an im-
plementation. If none is found, the superclass is checked and so on
up the hierarchy. Eventually an implementation will be found. To
see why, consider the fact that you cannot instantiate an object if it’s
class is abstract and that any class with unimplemented methods
must either declare those methods abstract or implement them before
the code can compile. So, the only way to compile and instantiate an
instance of a class is if you’re dealing with a concrete class in which
all declared methods are implemented. While its not always easy to
predict which implementation gets executed, it is guaranteed that an
implementation exists.

There is a middle ground between public and private. If you’d like
a method or field to be accessible within a subclass but not outside of
the hierarchy, then it should be declared as protected. In UML this
is indicated with a # symbol4. Declaring protected access is helpful 4 which shows up as a partially open

lock in the diagramwhen fields and methods are needed for subclass implementation
and only subclass implementation. In this case, public would open
up the fields and methods for access outside the implementation
code and private would restrict the fields and methods to the class
in which their declared. Protected is exactly the access you’d need.
We’ll always declare the abstract class constructors as protected be-
cause the only place you’re allowed to use them is the direct subclass
anyway.



comp 210 notes 5: class extension 6

The super keyword

If, within a class method, you wish to refer to the object on which
the method was invoked, then you use the keyword this. If instead
you wish to refer directly to a public or protected field or method
from that class’ superclass, then you use the keyword super. The most
immediate application of this is in constructors. Notice the construct
for the Circle class as shown in figure 7.

public Circle(Loc center, int radius) {

super(center);

this.radius = radius;

}

Figure 7: Circle construct that invokes
the AbstractShape constructor through
super

The center location is a property of the abstract super class and
is therefore initialized by that construct. We can invoke this through
super(. . .). A more this-like invocation of super can be seen in the
Eclipse generated hashCode for the Shape subclasses as shown in
figure 8.

public int hashCode() {

final int prime = 31;

int result = super.hashCode();

result = prime * result + radius;

return result;

}

Figure 8: Circle hashCode implementa-
tion that invokes super class hashCode
constructor through super

Notice that rather than initialize result to 1, it’s initialized to the
hash code of the superClass. This captures the hash of the center
location and leaves only the radius left to account for. Most impor-
tantly, this exposes an important idiom for dealing with superclass.
Just like we let contained classes manage their own data, we let su-
perclasses manage their own. You see this again in equals as shown in
figure 9.

When superclass data is private and you wish to incorporate it in
your toString output, then you’ll need to explore the Inherited Methods
menu and select an appropriate constructor as shown in figure 10.

Testing and AbstractClasses

The good news is that because you cannot directly instantiation ob-
jects from your abstract classes then you cannot directly test the class.
That’s also the bad news. Public methods from the abstract class
should be tested in its subclasses. Protected and private methods
should be tested implicitly through the subclass public methods. Ba-
sically the usual rule of thumb applies: test the public facing interface.



comp 210 notes 5: class extension 7

public boolean equals(Object obj) {

if (this == obj) {

return true;

}

// compare at the superclass level

if (!super.equals(obj)) {

return false;

}

// if you get this far, then obj

// must be an AbstractShape pinned

// to the same place as this

if (getClass() != obj.getClass()) {

return false;

}

Circle other = (Circle) obj;

if (radius != other.radius) {

return false;

}

return true;

}

Figure 9: Circle equals that incorporates
proper handling of super class data

public String toString() {

StringBuilder builder = new StringBuilder();

builder.append("Circle [radius=");

builder.append(radius);

builder.append(", center=");

// get the location of this actually drops

// down the getLocation definied in super

builder.append(getLocation());

builder.append("]");

return builder.toString();

}

Figure 10: Circle toString that uses the
public super accessor


	Shared Implementation and Class Extension
	Abstract Methods and Classes in Java
	Access Modifiers and Class Extension
	The super keyword
	Testing and AbstractClasses

