
COMP 210: Object-Oriented Programming Lecture Notes 4

Basic Classes and Hierarchies

Based on notes by Logan Mayfield

These notes are more or less a reorganization and retelling of content
from How to Design Classes chapters 1-4 and 10-14. Through a problem
with geometric shapes we’ll explore the design and implementation of
OO code using Object Containment and Class Unions.

Some 2D Geometry

Let’s think about the following problem1: 1 See page 27 and 155 in HtDC

You’ve been tasked to develop some libraries for managing basic
shapes laid out on a graphical canvas. The canvas is just a whole-
valued, positive only coordinate system addressed in row then col-
umn order with the origin, (0, 0) in the upper left hand corner.2. For 2 The standard coordinate system for 2D

computer graphicsstarters, your library should support three shapes: Circles, Rectangles,
and Dots. All shapes have an associated location. For circles that loca-
tion is the center of the circle. For rectangles, that location is the upper
left hand corner of the rectangle. For dots, that location is, essentially,
the dot. Circles also have an associated radius. Similarly, rectangles
have a length and width where length is the number of rows covered
by the rectangle and width is the number of columns. All shapes must
have the following functionality: compute and return its area, deter-
mine if a given point is within the bounds of that shape, compute the
distance of the shapes “pin” location to a given location, modify the
location of the shape, and compute and return the bounding box of a
shape as a Rectangle.

The Objects for Consideration

The first design question to ask yourself is, “What concrete objects
are implied by the problem description, what are their classes, and
how are the represented?” You need to establish the types/val-
ues/objects that will make up the problem domain so that problem
functionality can be attributed to the most appropriate type. In this
problem we see 3 concrete classes:

1. Dots which are represented by a location

2. Rectangles which are represented by a location, width, and length

3. Circles which are represented by a location and radius

There is another logically implied class as well:

1. 2D Canvas locations, i.e. (row,column) addresses for shape pin
locations

If each shape type has an associated location then we’re dealing
with object containment. You might be tempted to drop the
location class all together and simply use a row and column field in

comp 210 notes 4: basic classes and hierarchies 2

each shape type. But that’s not ideal. For starters, there is little reason
to flatten the problem logic like this. You’re likely to think and talk
about “locations” and “points” and there’s not reason to not reflect
that thinking in your design. Additionally, encapsulating location
specific functionality and logic, creates code independence between
the shapes and the implementation of their locations. As long as the
interface to a 2D point never changes, you’re free to tinker around with the
implementation of some or all of it’s behaviors without breaking the Shape’s
own implementation.3. Finally, by moving location logic into a separate 3 this is referred to as Separation of

Concernsclass we get to reuse code. If every Shape does it’s own location logic,
then you’ll end up repeating some logic verbatim within each shape
class.

Some of these things are a lot like the others

Dots, rectangles, and circles are not unrelated. In fact, we keep refer-
ring to them generically as shapes. A shape is not an object type in the
same sense as a Rectangle. The latter is tangible, concrete, while the
former is abstract and conceptual. We can understand and think in
terms of the Shape abstraction, but have not yet seen how to encode
this abstract relationship into our programs.

If a Shape isn’t a concrete object, then there can’t be a Shape class.
What shape really describes is the class union

4 of the Dot, Rect- 4 union here is the same union dis-
cussed in the mathematics of setsangle, and Circle classes. Any object of type Dot, Rectangle, or Circle

should also be viewed as an instance of the Shape type. The question
we must ask now is, “what makes a shape a shape?”

Once again we turn to behavioral abstraction. We’ll define shapes
not by specific data or physical properties but by behavior. In pro-
gramming terms, we’re talking about a common public interface.
The old saying, “walks like a duck, quacks like a duck, must be a
duck” is appropriate here. It defines ducks by what they do, not by
the presence of a beak, feather, webbed feet, etc.

Our problem statement clearly lists the expected behavior for
shape objects:

• Shapes can compute their own area

• Shapes can determine if a given point falls within the shape

• Shapes can determine the distance from the shape’s pin location to
another point

• Shapes can compute their own bounding boxes

• Shape can change their location

Notice that two of these behaviors could be restated as physical
properties and envisioned as data fields, not methods:

• Shapes have an area

• Shapes have a bounding box

comp 210 notes 4: basic classes and hierarchies 3

Both properties can be computed from other inescapable prop-
erties of a Shape5, and so they are also secondary attributes. If they 5 radius, width, height, etc

were fixed fields, then they’d need to be computed after the appro-
priate primary attributes were given. More importantly, committing
to representation via data, making these fixed fields not computed
values, means committing to a specific implementation. If area is
something returned by a shape, then we have not committed our-
selves to any one means of achieving that return value. This same
principle underlies the usage of basic getters and setters. By restrict-
ing access to data fields to methods, to abstractions, then you’re not
committing to any one representation of that data.

The combination of the Shape type with the concrete variants
Dots, Rectangles, and Circles, is our first class hierarchy. When
a set of classes can be viewed as subsets of some larger, logical class,
then we can create a class union by identifying the expected be-
havioral interface for all members of that union. Defining types
purely in terms of an interface6 is an important mode of thinking 6 the public methods

to work in. It affords you maximum implementation flexibility by
specifying what makes a type a type without committing to any in-
terface. It gives rise to a whole school of OO design and analysis in
which you program to interfaces, not implementations. Clearly you must
eventually implement something, but recognizing the ability to first
establish a concrete abstraction like the interface and then implement
that interface in a variety of ways is game changer.

From Hierarchy Design to Java Implementation

A class union defined solely in terms of object behavior7 is defined 7 methods

using a Java interface. An interface provides a series of method decla-
rations and documentation. Methods in an interface must always be
public and we therefore do not need to specify the access modifier.
Concrete instances of that type, i.e. the subclasses of the union, then
declare that they implement that interface. Classes can implement any
number of interfaces in Java. Once a class declares an interface, then
it must implement that interface8. 8 In the next notes we’ll see there is a

way around thisBefore we get to the coding, we’ll sketch out a visual diagram of
our Class hierarchy using UML9. This lets us write down everything 9 Unified Modeling Language

but actual method implementation details. In doing so we see all
the “what” details of our design without getting bogged down by
the “how”. This is nice in part because Java doesn’t typically let us
separate this like we did in C++10. It also let’s you devise an imple- 10 Header + Implementation

mentation plan. Eclipse can do a lot of the coding grunt work for us,
but we need to be able to direct it. It can help you implement a de-
sign, but I won’t do the design work for you. By diagramming your
hierarchy, you’re writing down your ideas in such a way that doesn’t
commit you to any code.

In UML, all classes and interfaces are designated with a box. At
the top of the box is the class/interface name. Interfaces are labeled

comp 210 notes 4: basic classes and hierarchies 4

as such to avoid confusion with concrete classes. Object containment
relationships are diagrammed using an arrow with an arrowhead
shaped point that points from container to containee. Subclasses of
a class union have an arrow with a triangular point that points from
subtype to supertype.

Figure 1 shows the basic structure of the Shape hierarchy design.
An instance of the Loc class is contained within each of the Shape
subclasses11. The Dot, Circle, and Rectangle classes form the Shape 11 Dot,Rectangle,and Circle each has-a

Loctype when joined by a union. This means that they each inherit that
type12. 12 Dot, Circle, and Rectangle each is-a

Shape

<<interface>>

Shape

Rectangle Circle Dot

Loc

Figure 1: Class and Interface Structure
for Shape Hierarchy

The class union relationship is then translated to Java through the
implements keyword in the class header line. This is illustrated in
figure 2.

// In Shape.java

public interface Shape{

// Method declarations here...

}

// In Rectangle.java

public class Rectangle implements Shape{

// Data and Method Definitions here

}

// In Dot.java

public class Dot implements Shape{

// Data and Method Definitions here

}

// In Circle.java

public class Circle implements Shape{

// Data and Method Definitions here

}

Figure 2: Connecting Shape Subtypes to
their Supertype

All interface methods are declared under the interface name.
Methods are declared with the following syntax:

name(parameter list) : return type

comp 210 notes 4: basic classes and hierarchies 5

Public and private methods can be designated as such using + for
public and − for private13. In figure 3 we see the complete UML 13 In some diagrams used in these notes

you’ll see an open or closed lockdiagram for the Shape interface.

<<interface>>

Shape
area() : double
isWithin(Loc l)) : boolean
boundingBox() : Rectangle
distanceTo(Loc l) : double
moveTo(Loc l) : void

Figure 3: The Shape Interface

For classes, we first list the data fields under the class name using
the following syntax:

name : type

Once again, a + or − can be used to designate a field public versus
private. We typically make all data fields private. Doing so forces a
layer of abstraction between the abstract behavior, as represented by
public methods, and concrete implementation, the private fields and
methods. Class methods are listed below the fields with the same
syntax as interface methods. However, we do not have to restate any
methods inherited from a superclass or interface. We will, for the
time being, restate the methods from java.lang.Object that we’re over-
riding14. In addition to these methods we’ll create two constructors, 14 equals,toString,hashCode

a default constructor and one to initialize all the fields, as well as
a suite of field accesssors and mutators. In practice you can design
whatever interface you need for you class. The style we’re using is
pretty standard. So much so that eclipse will write most of it for you.

Figure 4 provides the complete UML diagram for our Shape hier-
archy. Take a moment to give it a scan. Look at the classes individu-
ally, then examine the containment and union relationships.

There’s a lot more to UML diagramming. We’re just employing
some basics in order to clearly state the core details of our class de-
sign.

Completing the Implementation in Java

Eclipse has several features that help you to get Classes and Class
Hierarchies setup quickly:

• Automatic stubs for inherited methods by declaring interfaces15 in 15 and super classes

the new class wizard.

• Launching the new Class/Interface wizard from unresolved type
errors as a Quick fix option.

• Automatic generation of Class getters and setters based on de-
clared fields

• Automatic generation of Class constructors based on declared
fields

comp 210 notes 4: basic classes and hierarchies 6

<<interface>>

Shape
area() : double
isWithin(Loc l)) : boolean
boundingBox() : Rectangle
distanceTo(Loc l) : double
moveTo(Loc l) : void

Rectangle
pinloc : Loc
width : int
height : int
Rectangle()
Rectangle(Loc l, int width, int height)
getWidth() : int
setWidth(int width) : void
getHeight() : int
setHeight(int height) : void
equals(Object obj) : boolean
hashCode() : int
toString() : String
area() : double
isWithin(Loc l)) : boolean
boundingBox() : Rectangle
moveTo(Loc l) : void
distanceTo(Loc l) : double

Circle
pinloc : Loc
radius : int
Circle()
Circle(Loc l, int radius)
getLocation() : Loc
setLoccation(Loc l) : void
getRadius() : int
setRadius(int radius) : void
equals(Object obj) : boolean
hashCode() : int
toString() : String
area() : double
isWithin(Loc l)) : boolean
boundingBox() : Rectangle
moveTo(Loc l) : void
distanceTo(Loc l) : double

Dot
pinloc : Loc
Dot()
Doc(Loc l)
getLocation() : Loc
setLoccation(Loc l) : void
equals(Object obj) : boolean
hashCode() : int
toString() : String
area() : double
isWithin(Loc l)) : boolean
boundingBox() : Rectangle
moveTo(Loc l) : void
distanceTo(Loc l) : double

Loc
row : int
col : int
Loc()
Loc(int row, int col)
getRow() : int
setRow(int row) : void
getCol() : int
setCol(int col) : void
equals(Object obj) : boolean
hashCode() : int
toString() : String

Figure 4: Shape Class Hierarchy

• Automatic generation of equals, hashCode, and toString overrides
based on class fields

• Automatic generation of stubs for undeclared methods

Basically, most of your boilerplate can be automatically generated for
you and the methods that all objects inherit from the Object class can
be automatically overridden using accepted Java best practices.

To make the best use of Eclipse’s automatic code generation fea-
tures, we’ll work the implementation of our hierarchies from most to

comp 210 notes 4: basic classes and hierarchies 7

least abstract. This typically means interface on down.

1. Complete interfaces by declaring and documenting all their meth-
ods.

Whenever you need to reference a Class or Interface that is a part
of your program but is not yet implemented, just go ahead and
state the type. Eclipse will highlight it as an error. Ignore it until
the interface is complete.

2. For any undeclared interfaces or classes in your completed in-
terface, use the Create Class or Create Interface quick fix16 to have 16 hover the mouse over the error

Eclipse stub out the Class/Interface. Be sure to add interfaces to
the classes from within the wizard so that eclipse can stub out the
methods for you.

3. Repeat the above steps until you have rough stubs for the com-
plete hierarchy. All that should be left at this point are classes17 17 or hierarchies

of contained objects. Repeat the above stubbing process for those
classes/hierarchies as well.

4. For each class, add the data field declarations at the top of the
class, above stubbed out methods.18. 18 We’ll usually list fields first, then

methods
5. For each class use the Source menu to auto generate:

• A no-arg/default constructor and a field initialization construc-
tion19 19 one argument per field

• Getters and Setters

• An equals and hashCode method

• A toString method

Eclipse lets you specify the entry point for all the code it generates.
For our Java classes, a decent order would be: fields, construc-
tors, getters and setters, equals, hashCode, toString, and finally
inherited methods.

6. All the boilerplate and stubs for all the methods in all the classes
should now be in place and we can now generate JUnit Test cases
for each class and begin writing your tests.

In practice you should test any method that is public. Constructors
can be tested implicitly through the methods20. We may loosen 20 if it behaves the way its supposed to,

then it was constructed correctlyour testing practices up for auto-generated code eventually, but to
start out, writing tests is an excellent way to familiarize yourself
with the methods and their functionality.

7. Verify your auto-generated code then begin implementing your
core methods.

If, while implementing your design, you decide you need a helper
method, go ahead and call it. Eclipse generates an undeclared
method error with a quick fix option of adding that method to the

comp 210 notes 4: basic classes and hierarchies 8

appropriate class. If you’re confident in the helper’s purpose, then
finish the method that caused you to need the helper. If you’re
unsure about the helper, then stop work on the current method in
order to document, write tests for, and implement the helper.

It often makes sense, and is convenient, to run the tests for mul-
tiple classes at once. For example, you might like to run all the
tests for all the classes that implement a particular interface. This
is accomplished by a JUnit Tests Suite. Unfortunately, as of Jan-
uary 2019, Eclipse does not yet have a seamless way of creating
Test Suites for JUnit 5. So for now, just create a regular JUnit Test
with no tests. Before the class definition place two annotations:
@RunWith(JUnitPlatform.class) and SelectClasses(Class1.class,Class2.class),
replacing Class1.class and Class2.class with as many of the test
classes as you want to test. See https://howtodoinjava.com/junit5/

junit5-test-suites-examples/ for more annotations that can give
you more flexibility.

Polymorphic Method Dispatch

While you cannot instantiate a Shape object21. You can have variables 21 nor any Interface type

of that type.That variable can take on values22 of any of the classes 22 reference objects

that implement it. We call this variable polymorphic as its actual
value takes on many different forms, or types. There is often sig-
nificant advantage in doing this. It’s important to understand how
computation proceeds when working with these abstractly typed
variables.

Consider the following test: The type of aShape is Shape. The Shape

// A 5x5 square at row 14, column 10

Shape aShape = new Rectangle(new Loc(14,10),5,5);

assertEquals(aShape.area(),25.0,0.000001);

Figure 5: Testing a Rectangle with a
Shape Variable

type is an interface and has no concrete implementation for area. So,
determine how to compute the area of aShape cannot be as simple as,
“run the method implementation for the type of the variable.”

The key, of course, is that the type of the variable is less impor-
tant than the type of the value. In our example, the value stored in
aShape is of type Rectangle. This type has a clear and unambiguous
implementation for area. The only question is how does the com-
puter make this connection? The answer is substitution. First the
computer evaluates the variable itself and effectively substitutes the
name for the value. In our example this produces (conceptually) the
unambiguous statement23: 23 the assigned expression is the value

assertEquals(new Rectangle(new

Loc(14,10),5,5).area(),25.0,0.000001);

https://howtodoinjava.com/junit5/junit5-test-suites-examples/
https://howtodoinjava.com/junit5/junit5-test-suites-examples/

comp 210 notes 4: basic classes and hierarchies 9

What if this came next?

aShape = new Dot(new Loc(0,0));

assertEquals(aShape.area(),0.0,0.0000001);

Now the exact same expression24 produces the execution of differ- 24 aShape.area()

ent code.

assertEquals(new Dot(new Loc(0,0)).area(),25.0,0.000001);

This is an entirely new phenomenon for us. The reason is clear,
the expression maybe the same but the type of the object referenced
by aShape has changed and it’s that type that determines which
implementation of area is executed. This feature of OOP and class
hierarchies is called polymorphic method dispatch

25. Recall that 25 aka Dynamic Dispatch

the metaphor of operation is message passing. Calling area is done
by passing a message, or dispatching a message, to the appropri-
ate object which then executes the code. The dispatch described by
this expression can takes on many different forms26 within a single 26 polymorphic

program based on the type of the object referenced by aShape.

Examining Eclipse’s Code

You can learn a lot about Java and OOP programming idioms by
looking at the Eclipse generated code. It’s also worth playing with
the different options available to you. Here we’ll look at an instance
of equals and toString from the Shape hierarchy to point out some key
styles and practices.

equals for Circle

The equals method generator really on has one option that isn’t
purely stylistic and that’s one to “Use instanceof to compare types”.
We’ll start with this option unchecked and briefly discuss the dif-
ference when its checked. I always use the blocks in if statements
option, you can choose whichever style you prefer.

What is most important to realize is that the equals generated by
Eclipse allows you to compare an instance of your class to any other
datum in Java. This happens for two reasons. First and foremost all
Classes implicitly extend the java.lang.Object class27 and therefore in- 27 more of class extension in the next

set of notesherit the type Object. That means any object can be passed as input to
equals. The second reason this equals works on all data is that prim-
itive types can and will get auto-converted to a logically equivalent
built in Class through a process called autoboxing28. It’s this flexibility 28 https://docs.oracle.com/javase/

tutorial/java/data/autoboxing.htmland complexity that makes the Java equals an interesting method to
study.

The equals implementation for Circle is a good representative of
the equals method logic because it has both primitive and Class-based
fields. So, combined with the other equals boilerplate, it shows you

https://docs.oracle.com/javase/tutorial/java/data/autoboxing.html
https://docs.oracle.com/javase/tutorial/java/data/autoboxing.html

comp 210 notes 4: basic classes and hierarchies 10

everything you need to know really. In figure 6 we see equals for
Circle as generated by Eclipse.

public boolean equals(Object obj) {

// test for address equality

if (this == obj) {

return true;

}

// check that obj isn't just null

if (obj == null) {

return false;

}

// ensure that obj is a Circle

if (getClass() != obj.getClass()) {

return false;

}

// Ok. obj is a Circle. Compare them by fields.

Circle other = (Circle) obj;

if (center == null) {

if (other.center != null) {

return false;

}

} else if (!center.equals(other.center)) {

return false;

}

if (radius != other.radius) {

return false;

}

return true;

}

Figure 6: Eclipse equals for Circle

This equals implementation begins by checking for pointer equality
with the if on line 3. It then carries out a series of tests that, for the
most part, check for conditions that immediately rule out equality. If
all of those checks fail, then the argument obj must be an equivalent
circle. The if on line 7 checks to see if the Object reference obj is null,
if it is then we’re comparing an allocated Circle to nothing. These
first two conditions clearly illustrate the fact that object variables are
really pointer-like references to object values. Testing two variables
directly with == compares addresses, just like with C++ pointers. As
a reference to object, a variable can also refer to nothing, null, and so
we must always be wary of using the dot operator of a variable that
we cannot guarantee isn’t a null reference.

Once we’ve dealt with the pointer-like conditions, we move on
to the type checking. To be equal to a circle the Object obj must be a
circle. The if statement on line 11 verifies this. Notice that getClass() is
implicitly this.getClass(). This method, inherited from Object, returns
the type of the object on which its invoked and so this comparison
is only false when obj is of type Circle. When this is not the case, the
method returns false.

comp 210 notes 4: basic classes and hierarchies 11

When obj is a circle we begin the process of verifying that the circle
this and the Circle obj have equivalent field values. To do this we
need to stop looking at obj as an Object and start looking at it as a
Circle. On line 15 we type cast obj to Circle then assign that value to
the Circle variable other. The compiler recognizes other as a Circle
and allows us to access Circle fields and methods through the dot
operator and other.

The if starting on line 16 checks to see if the contained locations
are different and returns false if they are. Because, in general, Ob-
ject variables might be null, Eclipse does the safe thing and first null
checks all of the center fields starting with this.center29. Take the time 29 again, the this is implicit

to see how this code covers the standard four cases for two refer-
ences: both are null, only this.center is null, only other.center is null,
neither are null. Finally, when neither are null we hand off the re-
sponsible of equality checking to the contained Class equals method.
This is a vital strategy in managing class containment. As much
as possible, let the contained object manage all the computing relative
to its own value. A good gut check is if you find yourself selecting
a contained object’s fields and then computing with that value, step
back and see if you can rethink the problem as a method for the con-
tained object and write it as such30. 30 notice this only works if you can

modify the contained class’ definitionThe if on line 23 compares the primitive typed fields. These vari-
ables store their datum directly, not by reference. That means they
cannot be null and a direct comparison with == will compare the ac-
tual value, not the address of the value. This case is straight forward
and when it fails the method moves on to the final line. All the situ-
ations that would make these object not equivalent have been ruled
out, and so we return true.

This implementation demonstrates best practices for managing
contained objects as well as primitive data. In the later case, we’re
safe to proceed with basic computation. When we’re working with
objects, we should work through and with that object’s interface
rather than attempt to select field values and do the work ourselves.
The other part of our reality that this code highlights is the fact that
variables used to store objects are pointer-like in nature. They can be
null and their direct comparison is a check on sameness31 not value 31 as in same address

equality.
Had we selected to use instanceof, then rather than comparing

types with getClass we’d be checking the type of obj with the in-
stanceof operator as shown in figure 7 The big difference here is that

if(!(obj instanceof Circle)){

return false;

}

Figure 7: Type checking with instanceof

instanceof will return true of the object on the left is from the class
on the right or one of its subclasses. If in the future we extended Cir-

comp 210 notes 4: basic classes and hierarchies 12

cle somehow and obj was an instance of that subclass, then this code
wouldn’t recognize that the most specific, descriptive type of obj
didn’t directly match that of this. This may or may not be significant
depending on the problem and classes. We’ll stick to the getClass()
style to avoid the potential problem.

The many faces of toString

The only option for toString generation that we need to look at right
now is Code Style. The four options you can choose from really high-
light some old ideas as well as some newer OO ideas.

The first option is the purely functional one. By using the im-
mutable String class as shown in figure 8 we can often write a simple
one liner. What’s important to notice is the the value of center and
radius are implicitly converted to strings. In the case of center, this is
done through the Loc class’ toString method. This auto-conversion of
value makes generating strings32 easy. 32 and similarly output on System.out or

a stream

public String toString() {

return "Circle [center=" + center + ", radius=" + radius + "]";

}

Figure 8: toString using Strings

If functional programming isn’t your thing, then you can use the
mutable string class StringBuilder and construct the string via a series
of append mutations as seen in figure 9. Notice we still get the auto-
conversion of non-String values to strings.

public String toString() {

StringBuilder builder = new StringBuilder();

builder.append("Circle [center=");

builder.append(center);

builder.append(", radius=");

builder.append(radius);

builder.append("]");

return builder.toString();

}

Figure 9: toString with StringBuilder

If the stop and go, multi-statement style of figure 9 isn’t your
thing, then you can chain method calls together and do all the
appends in a single statement as seen in figure 10. This third style
merits some closer examination as it exposes a useful style for OOP
mutators that we’re likely to employ soon. Go look at the documen-
tation for StringBuilder’s append33. It returns a StringBuilder. What 33 https://docs.oracle.com/javase/7/

docs/api/java/lang/StringBuilder.

html
this code shows us is that the returned StringBuilder is the freshly
modified StringBuilder on the left side of the dot operator. This
works efficiently because of the pointer-like nature of Java object
variables. The return value of the mutation is effectively the address

https://docs.oracle.com/javase/7/docs/api/java/lang/StringBuilder.html
https://docs.oracle.com/javase/7/docs/api/java/lang/StringBuilder.html
https://docs.oracle.com/javase/7/docs/api/java/lang/StringBuilder.html

comp 210 notes 4: basic classes and hierarchies 13

public String toString() {

StringBuilder builder = new StringBuilder();

builder.append("Circle [center=").append(center).append(",

radius=").append(radius).append("]");

return builder.toString();

}

Figure 10: toString with StringBuilder
and chained calls

of the modified object. The subsequent method call then acts on the
same object rather than a copy. In C++ we accomplish this declaring
a reference-type return value using & then return *this at the end of
the method. In Java we’ll have to jump through significantly fewer
syntactic hoops.

The final option uses format strings which have their roots back in
Fortran. To read all about format strings you need to look at the doc-
umentation for the Formatter class34. This style of string construction 34 https://docs.oracle.com/javase/7/

docs/api/java/util/Formatter.htmlis useful to know because it lets you control things like the width of
printed values, the number of decimal places, and many other things
that we previously managed with stream manipulators in C++. We’ll
return to this topic later, so do take some time to go through the
Formatter documentation and learn about format strings.

public String toString() {

return String.format("Circle [center=%s, radius=%s]", center,

radius);

}

Figure 11: toString with printf style
Formatting

https://docs.oracle.com/javase/7/docs/api/java/util/Formatter.html
https://docs.oracle.com/javase/7/docs/api/java/util/Formatter.html

	Some 2D Geometry
	The Objects for Consideration
	Some of these things are a lot like the others
	From Hierarchy Design to Java Implementation
	Polymorphic Method Dispatch
	Examining Eclipse's Code

