
COMP 210: Object-Oriented Programming Lecture Notes 3

Object Orientation

Logan Mayfield

Objects and Classes

Up to this point, we’ve designed programs in which data definitions
and procedure definitions were, for the most part, separate. Sure,
we’d define structs and basic classes as the problem design, but the
core functionality of those types was largely carried out by proce-
dures and functions that were defined separately.

The design and implementation of abstract data types1 in COMP220
1 ADTs

began to change this. Class-based definitions encapsulated oper-
ations on data2 along with the data definition. Doing so opened up 2 class methods

the ability to control access to parts of the design. We could hide
implementation details within the class a private data and private
methods while exposing the required functionality as public. Still, the
remainder of the program, the application involving that ADT, was
represented with procedures and functions.

Object-Oriented programming changes this. Procedures and func-
tions become the exception. They’re used to support classes and
class methods, not the other way around. Classes and class-methods
become the rule. An object is, after all, an instance of a class. To
orient our programming around objects, we should orient our pro-
gram design around the classes that contain those objects. All the
computation must be clearly attached to and defined within a Class.
This turns the program into a series of interactions between different
objects.

The object-oriented design process rightfully begins with identi-
fying the classes, the data types, involved in our problem. We then
identify the functionality needed for each class in order to carry
out a series of interactions that solve the problem. Abstractly3, we 3 or not so abstractly in some languages,

i.e. Objective-Cimagine that a program is carried out by objects passing messages to
one another. When one object calls a method on another object, then
we imagine that caller passing a message like, “do that thing, the
method, you’re really good at with this data, the method arguments.”
The value4 returned from that method call is in turn a message from 4 an object almost certainly

the callee to the caller, “Sure. This data, the method return value,
is what I came up with.” This style of programming can fit into an
imperative regime or a functional one.

Class Hierarchies

Using class-based objects to encapsulate program logic is just where
the fun begins. With object-oriented program design we don’t just
design classes, we design class hierarchies. Hierarchical data is



comp 210 notes 3: object orientation 2

nothing new. We’ve at least implicitly recognized hierarchies of data
types in problems and used some non-object-oriented techniques
to deal with them. At a primitive level, when we overload a pro-
cedure to act on multiple types of a similar kind5, we’re creating a 5 i.e. lots of different types of numbers

procedure that implicitly acts upon a hierarchy of data.
In our work with C++ streaming I/O, we designed procedures

that explicitly took advantage of class hierarchies. We designed and
implemented I/O procedures to work on istream and ostream objects.
When we tested these procedures we used an istringstream or an os-
tringstream. The compiler allowed it even though the procedure’s
stream parameter type wasn’t the same as the argument type. This is
because the string stream classes are defined as a subclass of their
respective basic stream6. The subclass-superclass relationship is an 6 this makes the basic stream a super-

classimportant one to understand in OOP. Subclasses are extensions of
the superclass. This means the add or modify existing functionality.
For example, the ifstream class modifies the stream reading capabil-
ities of its superclass istream to read from files and then adds a few
file-specific methods.

Perhaps the most important, misunderstood, and abused subclass-
superclass relationship is inheritance. The type ofstream inherits its
superclass’s type, ostream. This means that all objects of type ofstream
are also of type ostream. This is exactly what allowed us to assign the7 7 object

of type ofstream or ostringstream to the ostream parameter of our C++
output procedures. The parameter itself exhibits polymorphism

8 8 Greek for “many forms”

as it can take on many different types, namely ostream and any of its
decedents in its hierarchy, over the course of a program. The methods
invoked from that ostream utilize polymorphic method dispatch.
The exact behavior of a method may depend on the exact type of
the object stored in the parameter, so the code executed9, can differ 9 or dispatched

when the object’s most specific type differs. Finally, the subclasses of
ostream exhibit implementation inheritance from ostream. Some
parts of their behavior are, in fact, implemented in ostream and do not
show up at all in their own definitions. When inherited methods are
invoked, the computer will recognize a lack of implementation in the
subclass and default to that of the superclass. This can propagate all
the way up the hierarchy.10 10 This paragraph is very important and

merits several careful re-reads!Polymorphism and inheritance can make code trickier to follow
and harder to predict. The exact method implementation that gets
called is now a dynamic, run-time property of the program. Previ-
ously, it was always clear. You, the programmer, created conditional
branching logic that dispatched the appropriate variation of a proce-
dure. For example, every time you checked to see if a list was empty
or not, you were dispatching based on type. In an OOP setting with
hierarchies of classes we can leave this mundane task to the com-
piler and computer. This is the trade off we make, more concise code
without a lot of type-based branching, but less static predictability.



comp 210 notes 3: object orientation 3

OOP in a Nutshell

Designing and implementing programs using object-oriented pro-
gramming is first and foremost about analyzing the they problem
from the perspective of hierarchical data types. We’ll see that this of-
ten means turning computation, things that we’d typically develop as
procedures, into tangible types, a thing that carries out a specific task.
Just as often it simply means attributing ownership of a particular
action to a specific type of data in a very clear and explicit manner
by making that action a class method. Either way, all our code is now
class-based. Our programs are now reasoned about as a series of in-
teractions between objects the result of which will solve our problem.
We design and implement things that can communicate in such a
way that leads to the solution to our problem.


	Objects and Classes
	Class Hierarchies
	OOP in a Nutshell

