
COMP 210: Object-Oriented Programming Lecture Notes 2

Procedural Java

Logan Mayfield

In these notes we look at designing, implementing, and testing basic
procedures in Java. We will rarely, perhaps never, program in this style
with Java. It’s not object-oriented. We’re doing this as a Hello-World
exercise. It lets us explore some key syntax in Java and see where it
differs from C++ at the statement syntax level. It also lets us get started
with JUnit, our new unit-testing framework.

Procedures and Static Class Methods

Java is not meant to be strictly procedural. You cannot even imple-
ment a procedure outside of bounds of a a class definition. There
is, however, cause to have class methods that can be invoked with-
out an object. These methods generally behave in the same fashion
as a procedure1 and certainly give us the ability to create the log- 1 we’ll explore them in detail later

ical equivalent to the procedures we used in C++. These methods
are called static class methods. The static keyword means their
behavior is completely determined at compile time and they are
therefore independent of any run-time values, specifically objects.

So, if you want to write procedural java you start with a class.
You then implement all the procedures with the keywords public and
static. The former ensures you can call the procedure from anywhere
and the later indicates the the procedure is not a method relative to
an instantiated object2. 2 You’ll see this in class an in the code

that accompanies these notesWithout further ado, let’s start cranking out some static class
methods3. 3 procedures

Functions

Just like in C++, the parameter and return types are declared with
the definition and checked by the compiler for consistency and cor-
rectness. The most important primitive types are the same: int for
integers, double for double-precision floating point, char for charac-
ters, and boolean4 for boolean values. 4 not just bool

Unlike C++, we do not separate declaration and documentation
from implementation. It all goes in one file. This is nice if you didn’t
like the separation but also makes it all to easy to skip early design
steps and jump to implementation too quickly. So be warned.

Let’s start with something that will cover a lot of the basics: the
classic recursive factorial. This lets us do a basic function that also
calls a function, itself, and uses conditionals.x

First we stub the function. In doing so we write out the complete
header line. Eclipse can use this to kick start the documentation.

Now, if you’re thinking that looks like C++, you’re right. Java
and C++ swim in the same syntax pool and draw from the same

comp 210 notes 2: procedural java 2

public static int factorial(int n){

return 0;

}

Figure 1: A Stub for factorial

imperative paradigm. For basic statements in Java, what you want
is pretty close to the equivalent C++. As we’re getting started, just
attempt some C++ and see if it flys.

To document this type /** on the line above your stub and hit en-
ter. Eclipse will get you started with annotations for the parameters
and return types. We’ll then add what we need. Here’s the finished
product.

/**

* Compute the factorial of n

* @param n a positive integer

* @return the factorial of n

* @throws none

* <dt>Precondition<dd>

* n >= 0

* <dt>Postcondition<dd>

* none

* <dt>Complexity<dd>

* Linear in n

*/

public static int factorial(int n){

return 0;

}

Figure 2: Documentation for factorial

The usual suspects are all there. We begin with a purpose state-
ment. The param tag documents each input and return documents
the output. The throws tag documents any exceptions generated by
the procedure. The remaining documentation sections all use HTML
to set them apart rather than an annotation. This is because we’re
plugging into Java’s documentation system and there is no pre, post,
and complexity. By using HTML, these sections will show up look-
ing like the other documentation5. We’ll see this in a little bit. If you 5 Go look these HTML tags up

think this looks messy you can just go ahead and use pre, post, and
complexity, though with some versions of Java Eclipse may give you
errors. There are ways to tell the javadoc tool (which is what gener-
ates HTML documentation from the comments) about custom tags,
but Eclipse seems to lack a way of settings this for all its Javadoc
view panels6. 6 Bonus points if you figure it out.

Preconditions and postconditions are nothing new. Complexity
is newer. We’re going to start documented the complexity of our
code. Sometimes you’ll need to come back an fill this in after you’ve

comp 210 notes 2: procedural java 3

implmented the code because you’re inventing a new solution. Other
times you’re implementing a known solution and can fill this in
ahead of time. Either way, it should be there for the major public
methods of each class. For minor private and very minor public
methods (e.g., getters and setters), don’t worry about complexity.
Also, you can skip any of the others

Now that the code is stubbed out and documented we can get
to writing JUnit tests7. In this case, we have no previously existing 7 Go read http://www.vogella.com/

tutorials/JUnit/article.html for a
great write up JUnit

test file for our class so we need to generate one. Eclipse can really,
really help you get started here. First we get to the New dialog8 and

8 File menu, quick button, right click
package in tests folderfind the JUnit Test Case. Select this brings up the dialog you see in

figure 3. Here we want to be sure and properly set the source folder
and package. This creates a class so you want to start the name with
an uppercase letter. I tend to just append _Tests after the class name
and I recommend you adopt something similar. Finally, nfill in or
select the Class Under so that Eclipse knows what classes are being
tested by this test case and hit Next.

Figure 3: Dialog for JUnit Test Case
Creation

Hitting next brings up the dialog seen in figure 4. This lets you
check off which methods you’d like Eclipse to stub out tests for.
Notice I’ve already stubbed out the procedures we’ll do later in these

http://www.vogella.com/tutorials/JUnit/article.html
http://www.vogella.com/tutorials/JUnit/article.html

comp 210 notes 2: procedural java 4

notes but have only checked factorial. This capability makes a case for
stubbing out all the methods you know for certain you need before
this step as Eclipse can easily stub their tests all at once.

Figure 4: Dialog for JUnit Test Case
Stub Selection

Once you hit finish on the stub selection dialog you’ll get a stub
class like the one below.

This stub has an automatically failing test that’s meant to remind
you that you need to write these tests. There are also the requisite
imports needed for basic testing. The Test annotation is detected
by the compiler and is how Tests are recognized as such. It is not
documentation, it’s a compiler flag.

You’ll find some basic documentation for the possible assertions
used in testing with JUnit at https://github.com/junit-team/
junit/wiki/Assertions. We’ll get a ton of mileage from assertEquals.
Eclipse has already written the import needed for us to avoid writing
the complete “path” to the test like you see in the examples on the
JUnit site. In our tests we’ll leave off the optional error message as
well and just state the expected and actual values9. 9 Use them whenever you need or want

thoughOnce again, it looks a lot like C++ doesn’t it? Take note that to call
the function, we start with the class name then use the dot operator,
then the function name. Now, take a moment to hover the mouse

https://github.com/junit-team/junit/wiki/Assertions
https://github.com/junit-team/junit/wiki/Assertions

comp 210 notes 2: procedural java 5

package ln2;

import static org.junit.Assert.*;

import org.junit.Test;

public class LectureNotes2_Tests {

@Test

public void testFactorial() {

fail("Not yet implemented");

}

}

Figure 5: Eclipse Generated JUnit Test
Case for factorial

@Test

public void testFactorial() {

assertEquals(1,LectureNotes2.factorial(0));

assertEquals(1,LectureNotes2.factorial(1));

assertEquals(2,LectureNotes2.factorial(2));

assertEquals(120,LectureNotes2.factorial(5));

}

Figure 6: JUnit Unit-Test for factorial

comp 210 notes 2: procedural java 6

over factorial. You’ll see why we used the HTML. Eclipse pulls up
a nicely formatted version of your documentation. As programs
get larger and span many many files, it’s extremely helpful to have
your documentation on hand as needed. You may also have noticed
that Eclipse brings up an auto-correct box after you type the dot
operator. This too is super nice. When you’re using libraries this is
a nice chance to browse for that method you know you need whose
name you can’t remember.

To run your tests we go to the Run menu and select Run As > JUnit
Test. Your tests will run. The results are displayed where the Package
explore is. It’s important to note that once a JUnit assertion fails,
the test program stops. In figure 7 you’ll see only one failure report
because the test stopped at the first failed assertion.

Figure 7: JUnit Test results with failed
test

Ok. Implementation time. Once again, let’s look at the finished
product. It should look familiar. I’m leaving the documentation off to
save space.

We can see that basic operator syntax and if style conditionals
in Java are exactly as they are in C++. As you typed this code you
should have noticed things like braces matching happening automati-
cally. Now re-run the tests and see that they pass.

comp 210 notes 2: procedural java 7

/**

* Documentation is here

*/

public static int factorial(int n){

if (n == 0){

return 1;

}

else{

return n * LectureNotes2.factorial(n-1);

}

}

Figure 8: Implementation for factorial

Output Procedures

Java has streaming output just like C++ and we can use one type of
stream to manage basic console and file output while using strings
for testing. That type is PrintStream10. As the documentation tells us, 10 https://docs.oracle.com/javase/

10/docs/api/java/io/PrintStream.

html
this class is inside the package java (it’s a standard class that comes
with Java) and the subpackage io (it has to do with input and/or
output). So to use it we’ll need import java.io.PrintStream;.

The problem we’ll solve is to write a string backwards. This lets us
make use of the Java String class as well as the PrintStream. Strings
in Java are just a bit different than C++. We’ll tease out the differ-
ences as needed. It’s worth looking at the official tutorial11 in addi- 11 https://docs.oracle.com/javase/

tutorial/java/data/strings.htmltion to the reference documentation.
First the documentation and stub.

/**

* Print the string str backwards on the stream out

* @param out Stream where the reverse is written

* @param str string to be printed in reverse

* @throws none

* <dt>Precondition<dd>

* none

* <dt>Postcondition<dd>

* for non-empty str, it's contents are written (in reverse)

* <dt>Complexity<dd>

* Linear in the size of str

*/

public static void printRev(PrintStream out, String str){

return;

}

Figure 9: Documentation and Stub for
printRev

Now the tests. Let’s start with the finished product then break
it down. Type these as is first. Eclipse will flag the the new types

https://docs.oracle.com/javase/10/docs/api/java/io/PrintStream.html
https://docs.oracle.com/javase/10/docs/api/java/io/PrintStream.html
https://docs.oracle.com/javase/10/docs/api/java/io/PrintStream.html
https://docs.oracle.com/javase/tutorial/java/data/strings.html
https://docs.oracle.com/javase/tutorial/java/data/strings.html

comp 210 notes 2: procedural java 8

as errors because their classes have not be imported. If you right
click the red-underlined test an option dialog pops up. One of the
options is to add the import. This feature is very, very nice. It lets
you code first and import as you go12. Just be sure you select the 12 it will make more sense when you see

and do itcorrect import.

@Test

public void testPrintRev(){

ByteArrayOutputStream actual = new ByteArrayOutputStream();

LectureNotes2.printRev(new PrintStream(actual),"");

assertEquals("",actual.toString());

actual = new ByteArrayOutputStream();

LectureNotes2.printRev(new PrintStream(actual),"hello");

assertEquals("olleh",actual.toString());

}

Figure 10: Unit-Tests for printRev

The ByteArrayOutputStream is a mutable stream that stores data in
a ByteArray. This storage property is why we’re using it. It will hold
onto the text that our procedure adds to it. We can then access that
data as a string with the toString method.

Notice that every object is allocated dynamically using new13. 13 same meaning as in C++

That’s because every single object in Java is dynamically allocated on the
heap. The good news is there is no delete because Java is garbage

collected. As the program runs, the Java Virtual machine that
executes the code will clean up the heap as needed. So, get used
to dynamically allocating objects and treating those objects as class
literals.

There two other things to take note of here:

• In C++ we were using the C++11 curly brace initialization for all
our variables. In Java, we use traditional assignment operator ini-
tialization. You can see this with the declaration and initialization
of actual.

• String literals are done just as they are in C++.

Now the implementation. We’ll use a for loop on this one. Notice
it’s just like in C++.

PrintStream objects print more or less like ostreams in C++ where
out.print(. . .) acts a lot like out � There is also a println method
that adds a newline after printing automatically. It’s incredibly use-
ful. Now re-run those tests and see that this code works.

Now what about actual output? The standard output is System.out
in Java. So printing to the console just means printing to System.out.

The output procedure doesn’t print a newline at the end so I’ve

comp 210 notes 2: procedural java 9

public static void printRev(PrintStream out, String str){

for(int i = str.length()-1 ; i >= 0; --i){

out.print(str.charAt(i));

}

return;

}

Figure 11: Implementation of printRev

public static void main(String[] args){

LectureNotes2.printRev(System.out,"racecar");

System.out.println();

return;

}

Figure 12: Output to the Standard
Output PrintStream

added the System.println() to do that and avoid console output ugli-
ness.

Input Procedures and Mutators

Java is pass by value. You cannot pass a variable by reference so you
cannot write mutators and input procedures like we did in C++.
However, it is possible to pass a mutable object to a procedure,
allow that procedure to mutate the object, and thereby get the the
same end result. This is very subtle difference. Even when we switch
to OOP we’ll come up against it. You’ve actually seen this at work in
the output procedure tests. The PrintStream object contained a mu-
table ByteArrayOutputStream which gets modified by the procedure.
This was all done behind the scenes though. 14. 14 It’s worth noting that primitive types

are not class-based objects and we
absolutely cannot mutate their variables
by passing them to procedures or
methods

When your goal is explicit mutation its important to know that
you must work through a class’ mutator methods. Assigning a new
value to the procedure’s parameter doesn’t modify the passed argu-
ment, it just makes the local parameter reference a new, different ob-
ject. This is equivalent to allocating a new object on a non-reference
pointer in C++. The address of new data is assigned to local data
only and doesn’t change the value of the passed argument. The fol-
lowing code illustrates the difference in pseudo-Java.

We’ll kill two birds with one stone and look at mutation in the
context of an input procedure. The procedure in question will read a
stream character by character and keep all the vowels. Those vowels
should be added to a string in the order in which they were read
from a string. This seems straight forward enough but there are a
few hoops we’ll have to jump through to make this work in Java.

comp 210 notes 2: procedural java 10

public void foo(SomeType var, ...){

// Assign new value to local variable var

var = new SomeType(...);

// Modify existing value of var via mutator method

var.setSomeTypeField(...);

}

Figure 13: Mutation via mutators vs the
assignment operator

The basic String class in Java provides an immutable string. For
mutable strings you can use the StringBuilder 15 class. Thankfully 15 https://docs.oracle.com/

javase/10/docs/api/java/lang/

StringBuilder.html
every single Java class has a toString method that returns a string repre-
sentation of the object and for StringBuilder objects that string is the
String type equivalent of the built string. Getting from StringBuilder
to String is super easy. The reverse is easy as well. StringBuilders
have a String based constructor as well.

Our replacement for istream and basic input streams will be Scan-
ner objects16. Scanners read almost all the primitive types, allow the 16 https://docs.oracle.com/javase/

10/docs/api/java/util/Scanner.htmlprogrammer to choose a delimiter for tokens, and can be used in con-
junction with files, the standard input, and strings. The one primitive
type they do not do is characters, the type we want for our problem.
The fix is simple enough though, read in data a String at a time, and
then iterate through the string one character at a time.

Ok. Let’s get to it. First the documentation and stub.

/**

* Read in all the vowels from in and write them in order

* to vowels.

* @param in Scanner for the input stream

* @param vowels StringBuilder where vowels from in are

* written

* @throws

* <dt>Preconditions<dd>

* none

* <dt>Postconditions<dd>

* Consumes all characters in Scanner in

* <dt>Complexity<dd>

* Linear in the number characters in Scanner in

*/

public static void collectVowels(Scanner in, StringBuilder vowels){

return;

}

Figure 14: Documentation and Stub for
collectVowels

Now tests. Notice the liberal use of unnamed, dynamically allo-
cated Scanners17. 17 new Foo(. . .) is the new literal

Now for the implementation. The while loop makes sense because

https://docs.oracle.com/javase/10/docs/api/java/lang/StringBuilder.html
https://docs.oracle.com/javase/10/docs/api/java/lang/StringBuilder.html
https://docs.oracle.com/javase/10/docs/api/java/lang/StringBuilder.html
https://docs.oracle.com/javase/10/docs/api/java/util/Scanner.html
https://docs.oracle.com/javase/10/docs/api/java/util/Scanner.html

comp 210 notes 2: procedural java 11

@Test

public void testCollectVowels(){

StringBuilder actual;

actual = new StringBuilder("");

LectureNotes2.collectVowels(new Scanner(""), actual);

assertEquals("",actual.toString());

actual = new StringBuilder("");

LectureNotes2.collectVowels(new Scanner("ab c d efg432"),

actual);

assertEquals("ae",actual.toString());

}

Figure 15: Unit-Tests for collectVowels

we don’t know how many tokens are in the stream and cannot count
through them. On the other hand, we can count through the String’s
characters and a for loop works just fine there. Finally, notice boolean
arithmetic is strictly binary, just like C++.

opublic static void collectVowels(Scanner in, StringBuilder

vowels){

while(in.hasNext()){

String nxt_line = in.next();

for(int i = 0; i < nxt_line.length(); i++){

char nxt_char = nxt_line.charAt(i);

if(nxt_char == 'a' || nxt_char == 'i' ||

nxt_char == 'e' || nxt_char == 'o' ||

nxt_char == 'u'){

// Mutator!

vowels.append(nxt_char);

}

}

}

return;

}

Figure 16: Implementation of col-
lectVowels

To run this on console/CLI input we construct a Scanner on
System.in, the standard input. In linux, Ctrl-D will send the end of
file/stream character/signal to the computer. So when you run this,
press Ctrl-D to terminate console input.

Don’t Try this At Home

Once again. This is not the mode in which you should be using Java.
We might design and implement procedures, but it will always be in

comp 210 notes 2: procedural java 12

public static void main(String[] args) {

LectureNotes2.printRev(System.out, "racecar");

System.out.println();

StringBuilder vowels = new StringBuilder("");

LectureNotes2.collectVowels(new Scanner(System.in),vowels);

System.out.println(vowels.toString());

return;

}

Figure 17: Using System.in Scanners for
Console Input

support of a larger Class-based design. That being said, we will de-
sign functional class methods, class I/O methods, and class mutator
and the general approach is them same for them as it is for their pro-
cedural counter parts. We’re starting here to get our feet with Eclipse
and JUnit while working with some basic statement-level Java. If
you’ve been playing along, then go tinker. You’ll have some fresh
procedures to design and implement for lab 1.

A Note on Style

Most software development companies/teams have a specific code
style that everyone must adhere to. We’re going to practice that in
this class by following Google’s style guide18. We’ll be following 18 https://google.github.io/styleguide/javaguide.html

sections 3-7, with the exception that your indentations don’t need to
be exactly 2 spaces (but they should be consistent). Read it and follow
it.

	Procedures and Static Class Methods
	Functions
	Output Procedures
	Input Procedures and Mutators
	Don't Try this At Home
	A Note on Style

