
COMP 210: Object-Oriented Programming Lecture Notes 1

Java Program Structure and Eclipse

Robert Utterback

In these notes we talk about the basic structure of Java-based OOP
programs and how to setup and build them with the Eclipse IDE. We’ll
more or less ignore Java syntax for now as the code that’s written in
this process is written by the IDE.

Overview

All code in Java must be in a class or something similar1. A source file 1 You’ll learn about some other class-
like definitionscan only contain one public class and the file name must match the class

name. So, if programs are built from the interaction of many objects
and we need multiple classes to define the types of those objects,
then we’re quickly going to be dealing with programs whose code is
spread across many, many files. Classes are organized within pack-
ages. Just like we did with C++ namespaces, we’ll always define our
classes within packages. Not using packages is not good style. Pack-
age placement will also have an impact on the scope of the definition
as well.

We’ll continue to use unit testing in the design and implementa-
tion of our programs. The go-to framework in Java is JUnit2. You’ll 2 http://junit.org

find it’s very similar to GTest. Just like before we’ll separate tests
from code. Each class will get its own file of tests, which will also
be a class of course. That class will typically get placed in the same
package as the class its testing.

To start out we’ll work with programs composed of several classes
that are defined in separate files and done so relative to a package.

Eclipse Projects and Project Structure

Eclipse is a programming IDE. It’s written in Java and very well
suited for Java development. Through plug-ins you can use it for a
wide variety of other languages as well. As a batteries included IDE
it includes a robust text editor, integrates with a compiler, and allows
you to run and debug programs from within the IDE itself.

Programs in Eclipse are represented as projects. Projects are orga-
nized within a workspace. The workspace corresponds to directory
and the program to a sub-directory of the workspace directory. When
you start Eclipse you’ll be prompted to select a workspace.

I recommend you create a class specific workspace, either way,
make a fresh, new directory to act as your Eclipse workspace. You
can also check the box to make this the default. You can always
switch workspace from the File menu in Eclipse.

http://junit.org


comp 210 notes 1: java program structure and eclipse 2

Figure 1: The Eclipse workspace selec-
tion window

The first time you launch Eclipse you’re greeted with a Welcome
screen. Just click the icon to take you to the workbench, where we’ll
be working.

Figure 2: The Eclipse Welcome Screen.
Just go to the Workbench.

You’re now ready to create a Java Project you can do this in the
usual ways, from File > New or the New Quick button. Once there,
choose a project name and ensure your settings look like those in
figure 3. Then click Next.

Next we need to do some setup for using our unit-testing frame-
work JUnit 5

3. There are two things to do: create a folder to hold all 3 http://junit.org/

out test code and add the JUnit library to the project. The folder is
optional, but it’s nice to keep our tests separate from our actual code.
To create the folder you’ll hit the new source folder link. In the dialog
that pops up, name the new folder tests and click Finish. You can see
this in figure 4.

http://junit.org/


comp 210 notes 1: java program structure and eclipse 3

Figure 3: First Screen in New Project
Dialog

Figure 4: First Screen in New Project
Dialog

To add the JUnit library itself, you need to select the Libraries tab,
then select “ClassPath”, then “Add Library...”, then select JUnit in the
dialog that pops up. Then press the Next button. You can see this in
figure 5. The last window ensures you have the right version of JUnit.
It should look like figure 6.

Once you’ve setup the test folder and library, you’re project is all
setup.



comp 210 notes 1: java program structure and eclipse 4

Figure 5: Dialogs for Adding JUnit to a
Project

Figure 6: Dialog to Select version 5 of
JUnit

Packages

Before we start creating classes we need to create a package or two
for those classes. Packages are created within source folders and
correspond to physical sub-directories within that folder. So, unlike
C++ Namespaces, packages have a physical presence.

If our tests and classes are going in the same package then we
need to create that package twice, once in the src folder and once in
the test folder. There are at least three ways to create a new package:
File > New, the New quick button, and right clicking the folder in
which the package is to be placed. In either case you end up at a



comp 210 notes 1: java program structure and eclipse 5

dialog like figure 7 that lets you specify the parent director and name
of the new package. The name of your package should start with a
lower case letter4. This is a convention and not a syntax error. You 4 Eclipse will warn you if you use

Uppercaseshould consider it an error though as you’ll lose points for violating
the convention.

Figure 7: New Package Dialog

When you’re done your project should show the packages within
their respective source folders as seen in figure 8.

With packages in place, we’re ready to start creating Classes, i.e.
source files.

Classes and Files

To create a new Class you an use the usual options: File > New,
the New quick button, or right click New on the package in which
you want the Class placed. We’ll always start by stubbing out the
class. We can then use Eclipse to stub out the tests. You’ll find that
Eclipse can auto-generate a lot of boiler place code for you. This
is good because it’ll save time. It’s bad because it’s all too easy for
you to ignore that code and not know how to write it yourself. This
will undoubtedly lead to you losing points on quizzes and exams or
botching an interview for an internship or job. So, just because the IDE



comp 210 notes 1: java program structure and eclipse 6

Figure 8: A Project with src and tests
folders and a shared package

writes the code for you doesn’t mean you don’t need to know how to do it
yourself!

The new Class dialog has lots of options. We’ll deal with them
on an as needed basis. The core options are specifying the location,
package, and name of the class. The class name should start with
an uppercase letter. This is, again, a convention that we’ll follow
as a rule. The class name becomes the file name. Java files have the
unsurprising extension of java. Figure 9 points the core options and
one extra option, stubbing out a main, that’s discussed a bit below.

The main procedure

The other New Class dialog option I’ll point out now is that this
dialog give you the option to automatically generate a stub for main.
Java, like C++, operates by executing a main procedure. It’s the one
procedure we’ll write with any kind of regularity.

Compile and Run

In figure 10 you’ll see a Hello World program in Java. We’ll leave
the details of the code itself for the next set of notes. For now you
should notice a few things highlighted in the figure. The green play
button compiles and runs the program. Console output5 happens 5 and input

down at the bottom. In code, the inclusion of a file/class in a package



comp 210 notes 1: java program structure and eclipse 7

Figure 9: New Class Dialog with core
options highlighted.

takes place with a simple package declaration. Files are opened and
edited in the center of the window. IF you’ve been following along,
then you’re encouraged to play around a bit. Go find some other Java
tutorials and make a more interesting Hello World. In the next set of
notes we’ll design, document, implement, and test some procedures
in order to get a better feel for the nuts and bolts of Java.



comp 210 notes 1: java program structure and eclipse 8

Figure 10: Hello World in Java


	Overview
	Eclipse Projects and Project Structure
	Classes and Files
	Compile and Run

