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Abstract
Record-and-replay systems are useful tools for debugging
non-deterministic parallel programs by first recording an
execution and then replaying that execution to produce
the same access pattern. Existing record-and-replay sys-
tems generally target thread-based execution models, and
record the behaviors and interleavings of individual threads.
Dynamic multithreaded languages and libraries, such as
the Cilk family, OpenMP, TBB, etc., do not have a notion
of threads. Instead, these languages provide a processor-
oblivious model of programming, where programs expose
task-parallelism using high-level constructs such as spawn/sync
without regard to the number of threads/cores available to
run the program. Thread-based record-and-replay would vi-
olate the processor-oblivious nature of these programs, as
they incorporate the number of threads into the recorded in-
formation, constraining the replayed execution to the same
number of threads.

In this paper, we present a processor-oblivious record-
and-replay scheme for such languages where record and re-
play can use different number of processors and both are
scheduled using work stealing. We provide theoretical guar-
antees for our record and replay scheme — namely that
record is optimal for programs with one lock and replay is
near-optimal for all cases. In addition, we implemented this
scheme in the Cilk Plus runtime system and our evaluation
indicates that processor-obliviousness does not cause sub-
stantial overheads.

Categories and Subject Descriptors F.2.2 [Analysis of Al-
gorithms and Problem Complexity]: Nonnumerical Algo-
rithms and Problems—Sequencing and scheduling; D.2.5
[Software Engineering]: Testing and Debugging—Debugging
aids, Tracing
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1. INTRODUCTION
Debugging multithreaded programs is challenging, due to
non-deterministic effects such as the interleaving of threads’
accesses to shared data. Different thread interleavings can
produce different results, and a bug that manifests under one
interleaving may not manifest under another, making repro-
ducing bugs notoriously difficult. A popular technique for
addressing this problem is record and replay [2, 20, 29, 34,
36, 37, 41–43, 48, 53, 56, 58, 63, 68–70]. One execution
records enough information about its behavior so that a sec-
ond execution can faithfully replay that behavior, producing
the same outcome. As a result, any bug that manifests dur-
ing the recorded run will be reproduced during the replay
run, easing the task of tracking down bugs.

In particular, we focus on programs where shared objects
are protected by locks. A record and replay system for these
programs must ensure that critical sections protected by the
same lock are executed in the same order during the record
run and the replay run. Prior work on record and replay gen-
erally records thread interleaving, and tracking the behavior
of the threads of a program as they execute, ensuring that
during replay, threads interleave in the same way when exe-
cuting critical sections. While this approach succeeds at its
goal of replaying recorded behavior, it has the drawback of
requiring that the replay run use the same number of threads
as the recorded execution.

This concession seems mild: most programming models
make the number of threads an explicit parameter. How-
ever, a class of parallel programming languages uses dy-
namic multithreading, where the number of threads is not
part of the model at all, such as the Cilk family [18, 32, 40],
subsets of OpenMP [6], Threading Building Blocks [39],
the Habanero family [8, 23], Task Parallel Library [46],
X10 [23, 24], and many others. In these languages and li-
braries, the program itself is processor (or thread) oblivious
— the programmer specifies the logical parallelism of the
program using primitives such as spawn/sync, async/finish,
or parallel-for loops. At run time, a scheduler is responsi-



ble for efficiently mapping this parallelism to worker threads
that execute the computation in parallel.1

Despite the lack of explicit threads, record and replay is
still useful for these dynamically multithreaded programs:
if multiple parallel tasks access shared data using a lock,
different executions might result in tasks’ accessing that data
in different orders. These sources of non-determinism can
lead to difficult-to-identify bugs.

To our knowledge, there exist no record and replay sys-
tems for dynamically multithreaded programming models.
Even if we keep the number of workers (threads) the same
for recording and replaying, standard record and replay
mechanisms do not directly work due to the Cilk scheduler’s
use of randomized work stealing: which workers execute
which tasks when is also non-deterministic and can change
from one execution of a computation to the next even if the
number of workers remains the same. If we record these
computations using a standard record and replay scheme,
then it would have record all of the decisions of the sched-
uler and then reproduce these exact decisions during replay
significantly increasing cost of both record and replay.

In this paper, we present PORRidge, the first processor-
oblivious record and replay system, and the first known
record and replay system for dynamically multithreaded pro-
grams. PORRidge targets data-race free (DRF) Cilk pro-
grams — those whose accesses to shared data are correctly
synchronized — and hence focuses on controlling the or-
der in which synchronization operations are performed.2 We
also assume that there are no parallelism within critical sec-
tions, which is a standard assumptions for most dynamic
multithreaded systems.

Following the processor oblivious model, PORRidge is
oblivious to the number of workers. Work stealing is used
to schedule the computation during both record and replay.
Hence, a program recorded on n workers can be replayed
on m workers. Indeed, m can be greater than n — a pro-
gram can be replayed on more processors than the original
recorded run! Replaying on more processors than the record-
ing can be useful during debugging: (i) debugging during
replay can be performed with heavyweight instrumentation
to aid in bug diagnosis, and replay on more processors can
compensate for the additional overhead of instrumentation;
(ii) if a bug is seen during recording long after a program
has started, replay on more processors can reproduce the bug
more quickly.

1 We use workers and processors interchangeably in this paper.
2 While data race freedom may seem to be a strong constraint, we note
two things. First, DRF is a common assumption for record and replay
systems [34, 63], as well as other dynamic analyses [55]. Second, DRF is a
limitation of the PORRidge implementation, which needs to track sources
of non-determinism. PORRidge uses the DRF assumption to allow it to
track lock operations only. However, the same conceptual record and replay
techniques could be applied to racy programs, by using race detection
tools (e.g., [25, 30, 31, 45]) to identify races and indicate to PORRidge
additional sources of non-determinism (tools like Chimera adopt similar
approaches [44]).

The key insight behind PORRidge is as follows: there are
multiple sources of non-determinism in scheduling when we
execute a dynamic multithreaded program, for instance, the
random work stealing decisions that the scheduler makes.
However, for a data-race free computation, a recording run
needs not record all this information to reproduce it faith-
fully during replay; it is sufficient to just record the order
in which various critical sections acquired a shared lock. To
be more precise, a dynamic multithreaded program can be
viewed as a directed acyclic graph, with each node in the
graph representing a task and edges between nodes repre-
sent dependencies. This graph is independent of the num-
ber of workers and for race-free computations, the only
non-determinism arises from the order that tasks acquire
locks. These lock acquires represent additional happens-
before edges in the program DAG and recording these ad-
ditional edges is sufficient to ensure that the DAG can be
replayed faithfully.

Therefore, during a recording run, PORRidge simply
records these happens-before edges. More importantly, dur-
ing the replay run, PORRidge ensures that the happens-
before relationships that were recorded are respected: in
other words, during replay, PORRidge schedules the aug-
mented DAG which contains all these happens-before edges
in addition to the original dependencies. While this new aug-
mented DAG may have parallelism limited by the happens-
before edges, its parallelism is not directly limited by the
number of threads that the recording run executed on.

Another important property of PORRidge is that the
recording system sits on top of its runtime. One possible way
to record a Cilk computation is to include the Cilk runtime
in the scope of what is recorded, recording and subsequently
replaying all of the non-deterministic decisions regarding
work stealing. But the Cilk runtime is highly parallel and
non-deterministic, and including it in the recording scope
would dramatically increase the amount of information to
be recorded. Instead, PORRidge only records the happens-
before relationships.

Replay is more complex. the Cilk runtime system is not
designed to obey happens-before edges that are not directly
part of the program itself. Therefore, PORRidge adds mech-
anisms to the Cilk runtime system to respect these dependen-
cies. However, these mechanisms, and generally all of the
non-determinism of the scheduler, remain encapsulated sep-
arately from the replay itself. By keeping the runtime (both
during record and during replay) outside the scope of the
system, PORRidge is able to maintain low overhead.

Contributions
This paper makes several contributions:

1. We present PORRidge, the first processor-oblivious record
and replay system for dynamic multithreaded programs
that keeps track of happens-before relationships between
critical sections. To our knowledge, this is the first record



and replay system (processor oblivious or not) for these
kinds of programs.

2. We state and prove the theoretical guarantees for POR-
Ridge. Despite the fact that PORRidge requires addi-
tional happens-before tracking during record, and re-
quires conforming to those happens-before edges during
replay, it can provide strong guarantees. In particular, let
W be the work required by a parallel computation —
its serial execution time; let S be the span (or critical
path length — longest sequence of dependencies in the
computation; let P be the number of processors; and let
B be the amount of work in critical sections. Then, the
runtime of the recorded execution is O(W/P + S +B).
For a single lock, this bound is asymptotically optimal.
While replay incurs slightly higher costs due to the ne-
cessity of respecting happens-before edges, its runtime
is O(W/P ′ + S′ log logP ′), where S′ is the span of the
augmented DAG (i.e., with the additional happens-before
edges) and P ′ is the number of processors the replayed
execution is run on. That means, it is possible for the re-
play to be asymptotically faster than the recorded run by
using more processors.

3. We implemented a prototype of our design within the
Cilk Plus [40] runtime system. We show across six
benchmarks that PORRidge delivers good scalability for
both record and replay. In particular, replay can often
provide better speedup than record as we increase the
number of cores. In addition, despite requiring additional
runtime mechanisms in order to respect happens-before
edges, the additional overhead of replay over the record
is small.

2. PRELIMINARIES
We now provide background on modeling parallel computa-
tions, work-stealing schedulers, and some definitions.

Dynamic Multithreading and Computation DAGs. Here
we will use Cilk Plus programming keywords, cilk spawn

and cilk sync, to explain the dynamic multithreaded pro-
gramming model; other languages may differ in keywords.
Parallelism is created using cilk spawn. When a function
instance F spawns another function instance G by preced-
ing the invocation with cilk spawn, the continuation of F
— the statements after the spawning of G — may execute in
parallel with G without waiting for G to return. Instruction
cilk sync acts as a local barrier; the control flow cannot
move past a cilk sync in function F until functions previ-
ously spawned by F have returned.

As is common in the literature, we model the parallel
computation as a directed acyclic graph, where each node
is a unit time computation and each edge represents a de-
pendence between nodes — a particular node is ready to ex-
ecute when all its predecessors have executed. Also, as is
common, we assume that each node has an out-degree of at
most two. A strand is a chain of nodes all with in-degree and

out-degree 1 — programmatically, a strand is a sequence of
instructions that contain no parallel primitives and therefore
must execute sequentially. We define two parameters on the
dag. Work W is the total number of nodes in the dag and
represents the execution time of the dag on one processor.
Span S is the length of the longest path and represents the
execution time on an infinite number of processors.

Work-Stealing Scheduler. During execution, a work-stealing
scheduler [17, 32] dynamically load balances a parallel com-
putation across available worker threads. Each worker main-
tains a deque, double-ended queue, to keep track of available
work. When a worker creates new strands, they are placed
on this worker’s deque. When it completes its current strand,
it takes work from the bottom of the deque. If its deque be-
comes empty, the worker turns into a thief and chooses a
victim worker at random to steal from. Given a computation
with work W and span S, a work-stealing scheduler exe-
cutes the computation in expected time W

P + O(S) on P
processors [17].

Modeling Critical Sections. Since our computations con-
tain critical sections, we must model those. We assume that
no parallelism within a critical section, and thus each criti-
cal section of length x is simply a strand (chain) of x unit
time nodes in the dag. Each node in the chain has in-degree
one and out-degree one. The first node of this chain is called
a acquire node and the last node is called a release node.
We say B1 is the total amount of time the lock `i is held —
therefore, it is the sum of the lengths of all chains represent-
ing critical sections held by `i. We say that the total blocking
time is B =

∑
iBi.3

Augmented DAG. Once we record the execution of a com-
putation DAG, we must replay it so that all the critical
sections protected by the same lock are executed in the
same order as the recorded execution. Therefore, additional
happens-before edges are added to the computation DAG.
We call the new DAG with the happens-before edges an
augmented dag. More precisely, if critical section b accesses
lock `i after critical section a that also accesses `i, with no
other critical sections in between accessing `i, then we say
that a is the predecessor critical section to b, and b is the suc-
cessor critical section of a. In the augmented dag, we add an
edge from the last node (release node) of a to the first node
(acquire node) of b. (Note that since the last node of a has
out-degree one from assumption, this still maintains the in-
variant that no node has out-degree greater than two). The
work of this new dag is still W since we haven’t added new
nodes. However, the span may be larger, and we denote the
span of the augmented dag by S̃.

3 If we are working with racy programs where we instrument the racy
accesses as light-weight critical sections, then we must also add those
critical sections in the calculation of B.



3. DESIGN OF PORRidge
We now describe the design and implementation of POR-
Ridge. As mentioned in Section 1, since the PORRidge is de-
signed for data-race free programs, it needs to capture only
the happens-before edges formed between critical sections
protected by the same lock during recording and enforce
the same happens-before edges during replay. Consequently,
PORRidge has a light-weight recording process that can be
implemented entirely outside of the work-stealing scheduler.
The replay process, on the other hand, requires modifica-
tions to the work-stealing scheduler in order to guarantee the
stated theoretical bound.

3.1 Record
Conceptually, during recording, PORRidge stores with each
lock an ordered list of successful lock acquires to this lock,
henceforth referred to as the lock-acquire ordering. Con-
ceptually, a lock object in PORRidge contains a pointer to
the underlying lock defined by the POSIX pthread specifica-
tion [38] and a data structure recording its lock-acquire or-
dering. PORRidge provides wrappers for the various thread
lock objects and associated acquire / release functions;
during recording, the wrapper functions are invoked via
compile-time interpositioning [21][Chp. 7.13] to record the
necessary information. When a worker successfully acquires
a lock, it simply adds the currently executing strand to the
end of its lock-acquire ordering. If the lock is not available,
the worker spins. At the end of the recorded execution, every
lock object writes out the strands in its lock-acquire ordering
to a log file in the order inserted.

Identifying Strands. For processor-oblivious replay, the
information stored in the list must uniquely identify critical
sections in the computation dag, and the identification must
be consistent across executions. Here, we use pedigree [47],
a sequence of integers corresponding to the rank ordering of
spawn statements in the ancestor functions (including this
function) that lead to the current strand. Pedigree uniquely
identifies each strand in a consistent manner since it depends
only on the computation dag and not on the schedule. Crit-
ical sections can be uniquely identified by uniquely identi-
fying the strand they are in and then their ordering within
the strand. Therefore, it is sufficient to modify the pedigree
mechanism slightly to uniquely identify critical sections.

The open-source Cilk Plus runtime [40] readily provides
support for pedigree; however, each read to the pedigree
incurs a worst-case Θ(d) overhead, where d is the maximum
spawn depth, the number of spawn statements nested on the
stack during serial execution. Since the pedigree must be
read in every lock acquire, this causes lock acquires to incur
Θ(d) overhead during record and replay. Ideally, we would
like to keep the cost of lock acquire to be constant in order
to guarantee both the record and replay time bounds.

To achieve the desired constant overhead, we use a strat-
egy similar to DOTMIX [47] to give each critical section a

section ID, which is effectively a hash of a pedigree that can
be maintained and derived with constant overhead. DOTMIX
works as follows. The runtime generates a size-d vector of
random numbers using the seed at the beginning of the com-
putation. Given a pedigree, DOTMIX takes dot-product of
the pedigree with the vector and mods the dot-product result
with a large prime p; provided that we use the same seed, a
pedigree always hashes to the same random number. More-
over, two random numbers generated via two different pedi-
gree have a low probability of collision [47]. Using a simi-
lar strategy as DOTMIX, we obtain unique section IDs with
constant overhead per lock acquire.

Storing Strand IDs. The drawback of section IDs is the
(rare) possibility of collision. We can detect these collisions
by maintaining the lock-acquire ordering for each lock using
a hash-list representation, which is a combination of hash
table and list. The hash list implicitly maintains a linked list
and records lock-acquire ordering using this linked-list, but
in addition hashes each list node in a hash table using the
corresponding section ID as the key so that the hash table
disambiguates lock acquires with the same section IDs.

During record, when a new lock acquire occurs, its sec-
tion ID gets inserted into the end of the implicit list. POR-
Ridge then checks the section ID in the hash table; if there
are no collisions (no entry with the same section ID exists
in the hash table), entry for this acquire is simply inserted to
the hash table. If there is a collision, it marks the first entry
with the same section ID in the hash table as “has collision,”
reads the full pedigree of the current section, and stores it in
the hash table using chaining. Therefore, each entry in the
hash table has two “next” pointers: one for the implicit list
ordering (points to the next section to acquire the lock) and
one for chaining (points to the full pedigree of a section that
has the same section ID).

3.2 Replay
At the beginning of the replay, the runtime reads in the pre-
viously recorded log and recreates the lock-acquire ordering
represented using a hash list. PORRidge maintains invariant
that the head of the implicit list always points to the next
strand that should successfully acquire the given lock. Each
list node also contains a pointer to the runtime data necessary
to enable suspending and resuming the strand. During re-
play, if a worker encounters a lock acquire for critical section
a, and its predecessor — a lock release of the critical section
b that was executed immediately before a during the record-
ing run — has not executed yet, the worker suspends the ex-
ecution of the strand, since it is not ready in the augmented
dag. On the other hand, when some worker (in this case, the
worker that executed b) releases a lock, it may enable crit-
ical section a (which was tried earlier and suspended); this
worker must then resume this suspended critical section.

Lock Acquire. When a worker encounters a lock acquire,
it checks the head of the list to see if this is the strand



that should get the lock next. If so, it acquires the lock
and continues execution. Otherwise, the worker hashes its
section ID and marks the corresponding hash list entry to
indicate that the corresponding lock acquire has been tried
and suspended. It then suspends the execution of its current
deque and work steals.

During process-oblivious replay, a worker must never
spin or wait to acquire a lock — spinning not only leads
to bad performance, it can also lead to deadlocks. Consider
an example where we record an execution on multiple work-
ers and replay it on one worker. Say the computation con-
tains two critical sections x and y, protected by the same
lock, that are logically in parallel with each other except for
the happens-before dependence. If x comes before y dur-
ing sequential execution, during replay on one worker, the
worker will encounter x first. However, since record is done
on multiple processors, y could have gotten the lock before
x during record, and thus replay must execute y before it can
execute x. If during replay, the worker simply spins when it
encounters x, it can spin indefinitely since no other workers
are around to execute y. Similar examples can also be cre-
ated for multiple-processor replay. Therefore, when a worker
encounters a lock that it cannot yet acquire during replay, it
is essential that it suspends and finds other work to do.

Lock Release. The worker first advances the head of the
list and checks to see if the next lock acquire has been tried
and suspended. If not, the worker simply continues the exe-
cution after the lock release. If the next lock acquire has been
tried and suspended, the worker performing the lock release
now has two continuations that it can potentially work on
— the continuation after the lock release, and the suspended
lock acquire enabled by this lock release. Both choices lead
to the same theoretical guarantees. In our implementation,
we chose to have the worker suspend the continuation after
the lock release and resume the next lock acquire in the list
to reduce contention. Note that it is possible for a worker to
release a lock while a different worker is concurrently sus-
pending the next lock acquire in line — the synchronization
is coordinated using a Dekker-like protocol [28], since there
are at most two workers concurrently operating on a given
list node.

Handling Section-ID Collisions. When a worker encoun-
ters a lock acquire and tries to determine if this lock ac-
quire is at the head of the lock-acquire ordering, it may find
the head list node marked as“has collision,” — in this case,
multiple sections with the same ID acquired this lock. Re-
call that during recording, the runtime stores full pedigrees
only when it discovers a section-ID collision; therefore, the
first lock acquire involved in the collision has its section ID
stored, and the remaining lock acquires involved in the colli-
sion have their full pedigrees stored. Thus, if a worker finds
a head list node with the same section ID but marked as
“has collision,” it must read its full pedigree and compare
it against other list nodes hashed with the same section IDs

(for which the full pedigree is stored). Only if none of them
match the current pedigree, the worker can conclude that it
is at the head of the list and proceed with getting the lock;
otherwise, it must suspend.

Runtime Modifications. The fact that a lock acquire causes
a worker to suspend its current execution causes the POR-
Ridge scheduler to diverge from the vanilla work-stealing
scheduler used by Cilk Plus without locks. The vanilla work-
stealing scheduler maintains the invariant that there are at
most P deques containing ready work throughout execu-
tion, where P is the number of workers used, and this fact is
important for proving the scheduling bound. The PORRidge
scheduler no longer maintains the P -deque invariant, since a
worker can suspend execution of a non-empty deque. Thus,
the runtime must handle multiple deques per worker, and ad-
ditional care must be taken to provide the provably-scalable
time bound for replay.

During replay, a a worker can suspend execution 1) upon
a lock acquire if the lock acquire is not ready, or 2) upon a
lock release, if the lock release in turn enables a suspended
lock acquire. In the first case, if the worker suspends its
current (non-empty) deque, it work steals and allocates a
new deque for the stolen work, thereby increasing the total
number of deques. In the second case, the worker suspends
the continuation of the lock release, and resumes the deque
containing the lock acquire that it just enabled; in this case,
the overall number of deques in the system does not increase.

One important thing to note is that, a suspended lock
acquire is never on top of any deque and therefore no one
ever steals it. When a worker suspends a deque due to a
lock acquire that is not ready, the suspended lock acquire
is at the bottom of the deque, and everything above it in
the deque is ready. If the suspended deque contains only
the lock acquire, the PORRidge runtime frees the deque.
The suspended lock acquire, in turn, is always resumed (or
enabled) by the lock release that unblocks it. In particular, if
r and s are critical sections for the same lock, and r acquired
the lock immediately before s during recording, then there
is an edge from the lock release in r to the lock acquire in s
in the augmented dag. Therefore, if the lock acquire in s is
suspended during replay, then s is resumed by the processor
that executed the lock release in r. This ensures 1) that no
worker ever waits or spins to acquire a lock, and 2) stealing
into a suspended deque always results a successful steal.

Since the PORRidge scheduler does not maintain the
P -deque invariant during replay, we need to make a few
changes to the scheduler to provide the provably good re-
play bound. First, we maintain the invariant that all P pro-
cessors have approximately the same number of deques by
the following mechanisms: (1) When a worker w suspends a
non-empty deque, it picks two workers uniformly at random
and gives the deque to the worker with the smaller number
of deques; and (2) on every steal attempt, the thief looks at
two workers (chosen randomly), takes a suspended deque



from the worker with a larger number of deques and gives
it to the worker with the smaller number of deques. Second,
given that all workers have approximately the same number
of deques, we modify the steal protocol to ensure that work-
ers steal from all deques uniformly at random. When a thief
steals, it not only selects a victim at random, it also chooses
among all the deques that the victim has to steal from at ran-
dom. We shall see how these changes allow us to provide a
provably-scalable replay time bound in Section 4.

3.3 Performance Optimization
Thus far we have been discussing the design assuming that
the lock-acquire ordering for a given lock is represented us-
ing a hash list. The hash-list representation works, but it
can incur large overhead in practice for benchmarks that are
already memory-bound (such as the graph benchmarks de-
scribed in Section 5), since random accesses to the hash list
inherently lack locality and incur additional cache misses.
We optimized the implementation of the record phase in
PORRidge by using a small bloom filter to detect section-
ID collisions in place of a hash table. Doing so allows the
PORRidge to store the bloom filter with the lock object it-
self, leading to better spatial locality, and it uses much less
space than keeping an actual hash list. The trade-off is that
a bloom filter can report false positives (i.e., detecting col-
lisions between section IDs with different values) and thus
may lead to reading and logging the full pedigrees unnec-
essarily. In our experiment, however, we find that using the
bloom-filter outperforms the hash list due to cache effects.

Even though we were able to use a bloom filter during
recording, the same optimization does not work during re-
play, since a worker uses the hash table not to identify colli-
sion but rather to find the list node corresponding to the en-
countered lock acquire quickly. During replay, a worker en-
countering a lock acquire that is not yet at the head of the list
needs to find the corresponding list node in order to mark it
suspended. If the corresponding section ID is marked to have
collision during recording, the worker also needs to search
through the list nodes with the same section ID to precisely
identify the correct list node. A bloom filter is not sufficient
for these purposes. Nevertheless, for many benchmarks, the
number of lock acquires for a give lock is small; thus, keep-
ing the lock-acquire ordering in a simple array and searching
through the array suffices. For such benchmarks, the spatial
locality and decrease in memory usage when using a sim-
ple array outweighs the benefit of constant-time search via
a hash-list. Since the number of lock acquires per lock is
known at the beginning of the replay, in our implementation,
we optimized the replay to choose between the two repre-
sentations — PORRidge keeps the lock-acquire ordering in
a simple array if the number is small, and it uses a hash-list
otherwise.

Finally, in the PORRidge scheduler, we perform the fol-
lowing optimization that is not necessary for the schedul-
ing bound but which improves performance in practice. Re-

call that there are two types of suspended deques. (1) When
a worker suspends a deque due to lock acquire, the bot-
tom node of this deque is a suspended node. (2) When a
worker suspends a deque after a lock release, all the nodes
in the deque are ready to resume and there are no suspended
nodes. When another worker steals from the second type of
deque with no suspended nodes, instead of stealing just the
top strand, it mugs the entire deque and resumes the bottom
node. This optimization reduces the number of deques faster,
making replay more efficient.

4. THEORETICAL ANALYSIS
In this section, we will prove theoretical upper bounds on
the running time of our record and replay strategy. Record-
ing and replaying are done in different processes and we will
provide separate bounds for them. The bound on the record
process follows directly from the bounds for work-stealing.
For replay, we analyze the scheduling strategy provided in
Section 3. In the analysis, we will extensively use the anal-
ysis of work stealing using a potential function provided by
Arora, Blumofe and Plaxton [3] (abbreviated as ABP).

4.1 Running Time of Record
THEOREM 1. Given a computation with work W , span S,
and blocking B (defined in Section 2), if we record the
computation on P processors, the running time isO(W/P+
S +B) in expectation.

Record analysis directly follows from work-stealing anal-
ysis. The only additional factor is that a worker spins when
waiting on a lock, making no progress towards completing
the computation. Thus, we shall divide the computation into
two types of phases and bound them separately. A phase is
non-blocking if no processor is waiting on a lock, otherwise
it is blocking.

LEMMA 2. The total amount of time spent in blocking
phases is at most B.

Proof. Obvious from the fact that the total time any pro-
cessor could be holding the lock is at most B.

LEMMA 3. The total expected time spent in non-blocking
phases is W/P + O(S). The time spent in non-blocking
phases is W/P +O(S + lg 1/ε) with probability 1− 1/ε.

Proof. During non-blocking phases, the processors are ei-
ther working or stealing. The total number of work steps is
at most W , since each work step consumes a unit of work
in the computation dag. From an argument very similar to
that in ABP [3], one can show that the total number of steal
steps when no worker is blocked is O(PS) in expectation
and O(PS + P lg 1/ε) with probability at least (1 − 1/ε).
Since there are a total of P processors executing these work
or steal steps, the total time spent on non-blocking phases
is as stated. Note that some work may also be done during



blocking phases; however, this only over-estimates the run-
ning time.

Combining Lemmas 2 and 3 gives us the stated theorem.

4.2 Running Time of Replay
THEOREM 4. Given an augmented dag with work W and
span S̃, the replay process completes in expected time
O(W/P + S̃ lg lgP ).

As with the analysis of replay, we divide time steps into work
steps and steal steps. No worker ever waits on a lock, so
there are no blocking steps. The total work is still bounded
by W . Therefore, it only remains to bound the number of
steal attempts.

We will use the ideas from the ABP analysis to bound
the number of steal attempts. The main difference between
vanilla work stealing and our replay strategy is that we now
have more than P deques. In particular, the high-level idea
in the ABP analysis is the following. If there are X deques
in the system, then X steal attempts are likely to reduce
the critical path by a constant amount. Therefore, the total
number of steal attempts is ((number of deques) × S) in
expectation. Since our scheduler can have an arbitrarily large
number of deques (as large as the number of critical sections
in the program), we would get a very bad bound if we
directly applied that technique. We use additional insights
to bound the number of steal attempts for a replay scheduler.
We first make the following observation.

OBSERVATION 5. A steal from a suspended deque always
succeeds since it is never empty. Since a successful steal is
followed by a unit of work by the thief, the total number of
steals from suspended deques is bounded by W .

Note also that when the number of suspended deques is
small, i.e. still on the order of O(P ), we can use an analysis
similar to ABP to bound the steal attempts. We only run into
issues when the number of suspended deques is not small.

A work-bounded phase begins when at least P/2 work-
ers have at least one suspended deque. During a work-
bounded phase, about a quarter of the steal attempts are
likely to succeed (since that many of the steals occur from
a suspended deque). Thus we can bound the total number
of steal attempts in these phases by the work of the compu-
tation. A steal-bounded phase begins with fewer than P/2
workers having any suspended deques. Recall, as described
in Section 3, we try to keep the number of deques across
workers roughly balanced by throwing deques to workers
at random. Therefore, if fewer than P/2 workers have sus-
pended deques, the total number of deques in the system
are likely to be small. Therefore, we will bound the steal at-
tempts occurred during steal-bounded phases using analysis
similar to that in ABP. Note that a phase is either work-
bounded or steal-bounded.

LEMMA 6. The expected number of steal attempts during
work-bounded phases is O(W ).

Proof. In work bounded phases, at least P/2 processors
have suspended deques. Since a thief chooses a victim uni-
formly at random, we have 1/2 probability of stealing into
these processors with suspended deques. In addition, since
these workers have at most one active deque and at least one
suspended deque, about half of the steals from these workers
are expected to be successful. Therefore, the expected num-
ber of steals attempts during work-bounded phases is 4X
where X is the number of steal attempts from suspended de-
ques. Combining with Observation 5 gives the lemma.

We now consider bounding the steal attempts in steal-
bounded phases. Although we now potentially have more
than P deques, we can still use analysis similar to APB
to bound the steal attempts. At a very high level, the APB
analysis works as follows. The computation starts out hav-
ing bounded “potential,” which is a function of the compu-
tation’s span. Note that the important node that one needs
to execute in order to make progress on the span always sits
on top of some deque. The key point in the ABP analysis is
that, if there are X deques in the system, and we steal uni-
formly at random from them, then after O(X) number of
steal attempts, some worker steals and executes the impor-
tant node at the top of some deque and thus make progress
on the span. Hence we can bound the number of steal at-
tempts to be O(XS) in expectation.

Similar to ABP, we define a potential function based on
the depth of nodes in the augmented dag. The depth of a node
d(u) is recursively defined as 1 plus the maximum depth of
all its parents. The weight of a node is w(u) = S̃ − d(u).
Then, we define a potential as follows:

DEFINITION 1. The potential Φ(u) of a node u is 32w(u)−1

if u is assigned, and 32w(u) if u is ready.

The total potential of the computation is the sum of the
potentials of all its ready and assigned nodes, and the follow
lemma follows from the APB analysis in a straightforward
manner.

LEMMA 7. The initial potential is 32S̃−1 and it never in-
creases during the computation.

The following lemma is a straightforward generalization of
Lemmas 7 and 8 in ABP [3].

LEMMA 8. Let Φi denote the potential at time t and say
that the probability of each deque being a victim of a steal
attempt is at least 1/X . Then after X steal attempts, the
potential is at most Φ(t)/4 with probability at least 1/4.

In ABP, X would be P . In our case, we need to analyze
what X is. To bound X , we define the number of suspended
deques a worker has as its load, and we are concerned
with the maximum load, i.e., highest number of suspended
deques a worker can have. We consider two scenarios. First
scenario is where there are at most 2P suspended deques
in the system, and we can bound the maximum load in this
case.



LEMMA 9. Say there are at most 2P suspended deques over
all processors. With probability at least 1 − 1/P 2, the pro-
cessor with the largest load has at most k = lg lgP +O(1)
suspended deques.

Proof. The lemma follows from the Azar et. al’s [5, 7]
classic balls into bins results. They prove that if we throw
K balls into P bins by checking two bins and throwing
the ball into the less loaded bin, then the maximum load is
lg lgP+O(K/P ) with high probability. That is, the loads in
bins are mostly balanced within an additive factor of lg lgP .
If we think of suspended deques as balls and processors as
bins, by performing the load balancing of suspended deques
described at the end of Section 3, this result guarantees that
when deques are suspended, they are distributed evenly. We
will say that a distribution is balanced if the processor with
the largest number of deques has fewer than 2 lg lgP deques,
otherwise, we will say that the distribution is unbalanced. We
must also worry about imbalance creeping in as processors
steal from suspended deques and suspended deques disap-
pear. However, the proof of Theorem 4.1 from Azar et. al’s
paper [7] implies that if we start from an imbalanced distri-
bution, and on each step, pick two random bins, and move
a ball from the more loaded bin to the less loaded bin, then
after P 2 lg lgP steps, bins will be balanced again. Since our
strategy for steals from Section 3 follows exactly this strat-
egy, the following claim follows:

CLAIM 10. If we start from a balanced distribution, it be-
comes imbalanced after P 2 lg lgP steal attempts with prob-
ability at most 1/P 2. If the distribution becomes imbal-
anced, it becomes balanced again after P 2 lg lgP steal at-
tempts with probability at least (1− 1/P 2).

In the other scenario, where there are more than 2P
suspended deques in the system, we cannot readily bound
the maximum load, but one can show that such a scenario
falls under the work-bounded phase with high probability:

LEMMA 11. Say there are more than 2P suspended deques.
At least P/2 workers have at least one suspended deque with
probability at least 1 − (e/8)P/2 ≥ 1 − 1/P 2 for large
enough P .

Proof. The probability that P/2 workers have no sus-
pended deques is

(
P

P/2

)
(1/2)2P ≤ (2e/16)P/2.

We will divide each steal bounded phase into rounds with
2P lg lgP steal attempts. We say that a round is good if the
maximum load is at most 2 lg lgP throughout the round and
bad otherwise.

LEMMA 12. Let Φ(t) denote the potential at the beginning
of a good round. After P lg lgP steal attempts, at the end of
the round, the potential is at most 3Φ(t)/4 with probability
at least 1/4.

Proof. There are at most 2P lg lgP deques during the
round. Therefore, the probability that a particular steal at-

tempt hits a particular deque is at least 1/(2P lg lgP ) (it
may be higher since some workers have fewer than lg lgP
suspended deques). Therefore, we can apply a small modifi-
cation to Lemma 8 generalized from ABP and argue that the
total potential decreases.

LEMMA 13. The total number of good rounds is O(S̃) in
expectation.

Proof. Similar arguments to ABP. At a high level, from
Lemma 12, a constant number good rounds suffice to de-
crease the potential by a constant factor in expectation.
Therefore, the number of rounds needed to reduce the po-
tential to one is log of the initial potential, which is 32S̃ .
Therefore, after O(S̃) rounds, the potential disappears and
the computation completes.

We still need to bound the number of bad rounds, how-
ever.

LEMMA 14. The number of bad rounds is O((1/P )X)
where X is the number of good rounds.

Proof. A round is good with probability at least 1− 1/P 2

from Lemma 9, Claim 10, and Lemma 11. If we ever
get into a bad round, things become balanced again af-
ter O(P 2 lg lgP ) steal attempts, or O(P ) rounds from
Claim 10. Therefore, it takes P 2 good rounds before a bad
round occurs and then there can be at most P bad rounds
before a good round occurs again. The following lemma
follows from Lemmas 13 and 14 and the fact that each round
has P lg lgP steals.

LEMMA 15. The expected number of steal attempts in steal
bounded phases is at most O(S̃P lg lgP ).

The following lemma follows from Lemmas 6 and 15

LEMMA 16. The total number of steal attempts across all
phases is O(W + S̃P lg lgP ).

Lemma 16 and the facts that the total amount of work is
W implies Theorem 4.

l1 l1 l1 l1 

l2 l2 l2 l2 

l3 l3 l3 l3 

Figure 1: An example DAG with multiple locks where get-
ting a tight bound for recording is impossible for an on-
line scheduler. The offline scheduler can always schedule
the “important” (in this case, the right-most) critical section
first, but an online scheduler has no way of knowing which
critical section is “important”, and therefore may execute it
last.



4.3 Discussion
We now discuss how good or bad these bounds are, theoret-
ically. For a single lock, note that W/P , S, and B are all
lower bounds on the execution on P workers; therefore, the
bound is tight. For multiple locks while W/P and S are still
lower bounds,B is not a lower bound for all dags. Neverthe-
less, this bound is existentially tight — there exist dags for
which it is tight. In general, it is difficult for online sched-
ulers to get tight bounds on all computation dags with multi-
ple locks without knowing what the future DAG looks like.
Consider the dag shown in Figure 1. Gray rectangles rep-
resent critical sections, and all critical sections in the same
layer access the same lock. An optimal offline scheduler will
schedule the right-most critical section of each layer first so
it can schedule the next layer in parallel with the previous
layers and can get good speedup. However, an online sched-
uler cannot know which critical section of each layer leads to
more future work and may execute them in an order that gets
no speedup. In general, an online scheduler cannot guarantee
optimality, since for any online strategy S, there is a bad dag
where the next layer is always created by the critical section
this strategy S executes last.

Let us now consider replay. In this case, W/P , and S̃
are lower bounds; therefore the replay bound of O(W/P +
lg lgPS̃) is nearly tight — it just has an additional lg lgP
factor on the span term which is tiny for most machines. In
addition, since it is on the span term, according to the work-
first principle [32], this overhead does not affect computa-
tions with sufficient parallelism.

On series-parallel (or more generally, fully-strict) com-
putations, depth-first work stealing (of the kind we use) also
guarantees a space bound; in particular, if the sequential ex-
ecution uses S1 stack space, work-stealing uses O(PS1)
when using P workers. Since record uses vanilla work-
stealing, it also provides this space bound. However, the re-
play scheduler executes the augmented DAG which is not a
fully-strict DAG. In fact, one can generate augmented DAGs
for which it would be impossible to simultaneously provide
good speedup and space bounds; the construction is similar
to the lower bound in Section-3.1 in [16]. Since our replay
scheduler provides an good speedup, it can not guarantee
low space usage.

5. EMPIRICAL EVALUATION
This section empirically evaluates PORRidge. The main
benefit of a processor-oblivious record-replay system is that
one can replay an execution on a different number of pro-
cessors from that used during the recording — including a
larger number — allowing the replay to benefit from paral-
lel execution. There are inherent overheads in the record and
replay in order to allow processor-oblivious replay, however.
Specifically, during record, PORRidge must record happens-
before edges via section IDs in a schedule-independent fash-

number number of lock acquires
application of locks total min max mean std. dev.
chess 4 2.8e4 0 2.8e4 7.1e3 1.4e4
dedup 1 7.3e5 7.3e5 7.3e5 7.3e5 n/a
ferret 1 256 256 256 256 n/a
matching 5e6 5e7 5 25 10 2.23
MIS 5e6 2.8e6 3 27 5.63 2.73
refine 4.8e7 1.2e7 0 27 0.26 0.56

Table 1: Application benchmarks used and their execution
characteristics measured when running on one worker. The
total column shows the total number of lock acquires across
all locks during execution. The min column shows the mini-
mum number of lock acquires invoked on a given lock across
all locks; similarly, the max column shows the maximum.
The last two columns show the average number of lock ac-
quires per lock and the standard deviation.

ion; during replay, PORRidge may need to suspend and re-
sume strands upon lock acquires and releases.

We empirically evaluated the overhead and scalability of
the record phase and replay phase across six benchmarks
with different execution characteristics. Our results indicate
that, for benchmarks that have a sufficiently large work-to-
critical-section ratio, record and replay incur negligible over-
head. For benchmarks whose work is dominated by critical
sections, record and replay can incur up to 3.73× overhead,
with replay incurring slightly higher overhead than record.
In terms of scalability, recording scales similarly compared
to the baseline. As long as there is sufficient parallelism in
the recorded execution, the replay scales similarly. More-
over, due to its non-blocking execution model, the replay
continues to get speedup beyond Prec workers, where Prec

is the number of workers used during recording.

Benchmarks. We used the following six benchmarks to
evaluate the PORRidge system. The first one, chess, is
a Cilk Plus program published by Intel [62] that solves a
chess puzzle — given eight chess pieces excluding pawns,
it counts the number of configurations where the pieces
can attack all squares on an 8 × 8 chess board. The orig-
inal program uses reducers [33] to keep the count of the
number of such configurations found and to perform I/O;
we modified the program to use locks instead. Two bench-
marks, dedup and ferret, are from the PARSEC bench-
mark suite [13, 14]; they can be implemented as Cilk Plus
programs that use locks for performing file I/O. Finally, we
converted several nondeterministic versions of graph algo-
rithms from the Problem Based Benchmark Suite [65] to
use locks instead of Compare-And-Swap (CAS): MIS (Max-
imal Independent Set), matching (Maximal Matching), and
refine (Delaunay Refinement). These benchmarks cover a
wide spectrum of behaviors. Their runtime characteristics
when executing on one worker are shown in Figure 1. Note
that the characteristics during parallel execution may differ
slightly for some of the graph benchmarks as they are non-



baseline record replay
chess 64.43 64.38 (1.00×) 65.11 (1.01×)

dedup 48.04 48.20 (1.00×) 48.16 (1.00×)

ferret 8.92 8.89 (1.00×) 9.10 (1.02×)

matching 3.06 9.64 (3.15×) 10.07 (3.29×)

MIS 1.01 3.42 (3.39×) 3.77 (3.73×)

refine 11.70 14.73 (1.26×) 13.63 (1.16×)

Table 2: Execution times running on one worker (Pbase =
Prec = Prep = 1) for six benchmarks, in seconds. The
replay column shows the replay execution time for replay-
ing the run recorded with one worker. The numbers shown in
parenthesis indicate the overhead compared to the baseline.

deterministic by nature. The first three benchmarks use few
locks, but still have plenty of critical sections; however, they
do a significant amount of work outside of critical sections.
The graph benchmarks use a much larger number of locks,
since there is one lock per vertex in the input graph. In addi-
tion, they do almost all of their work within critical sections.

Experimental Platform. We ran our experiments on an In-
tel Xeon E5-2665 with 16 2.40-GHz cores on two sockets;
64 GB of DRAM; two 20 MB L3 caches, each shared among
8 cores; and private L2- and L1-caches of sizes 2 MB and
512 KB, respectively. Both hyperthreading and dynamic fre-
quency scaling are disabled in order to get consistent results
across runs. For recorded runs, running times are in seconds
as the mean of five runs, and we used a 64-bit bloom filter
in our implementation (see Section 3). For a given number
of workers, the recording with the median running time is
chosen for the replay runs. For the most part, the standard
deviation was within 5% of the mean for both record and
replay. A few data points were the exception — graph al-
gorithms that are memory-bound (matching and MIS) have
higher standard deviation during some replay, up to 12% for
MIS.

Notation. We use the following notations in this section.
The label baseline refers to executions of the benchmarks
with ordinary spin locks (i.e., without PORRidge). The label
record refers to the executions with recording enabled using
PORRidge. The label replay refers to the executions with
replay enabled using PORRidge. We use Pbase to refer to
the number of workers used during baseline execution, Prec

to refer to the number of workers used during record and
Prep to refer to the number of workers used during replay.

5.1 Overhead of Record
To evaluate the recording overhead, we compare the run-
ning time of PORRidge recording on one worker with the
baseline running on one worker. Table 2 shows the execu-
tion times of six benchmark for these configurations. The
recording overhead ranges from 1–3.39× with a geomet-
ric mean of 1.62×. Since PORRidge incurs overhead only
upon lock operations, the overhead is in part dictated by how
much work is done per lock acquire. For programs that per-

form sufficient amount of work outside of critical sections,
such as chess, dedup, and ferret, the overhead is negligi-
ble. The graph algorithms, especially matching and MIS, in-
cur higher overhead. For these applications, almost all of the
work occurs inside critical sections. In addition, each critical
section does a very small amount of work. Their executions
mostly involve repeatedly traversing some edge, acquiring a
lock corresponding to the vertex at the end of the edge, up-
dating a field in the vertex, and releasing the lock. Hence, the
execution time of these programs is dominated by the cost
of acquiring and releasing locks. Moreover, these applica-
tions are memory bound — they have large working sets and
display very little locality in accessing data. The additional
space used for logging during recording puts additional pres-
sure on the memory hierarchy. In the initial implementation,
we have used a hash list to detect collisions of section IDs
(discussed in Section 3), and the additional cache misses in-
curred by accessing the hash list incurred much larger over-
head in these applications (8–9×). By reordering the book-
keeping data layout to obtain better spatial locality and using
a bloom filter instead of a hash list, we were able to reduce
the overhead drastically.

5.2 Overhead of Replay
Replay has two types of overheads. Replay, like record,
incurs overhead upon lock acquires and releases. When a
worker tries to acquire a lock, it must search the lock-acquire
array or query the hash list with the current section ID to see
if this lock acquire is the next in line to obtain the lock. If
so, it can acquire the lock. Otherwise, it must suspend. Upon
a release, the worker advances the head of the lock-acquire
list; if the next lock acquire has been tried and suspended,
the worker suspends its current execution and resumes the
execution of the next lock acquire. In addition, replay also
incurs overheads due to maintaining more deques than the
vanilla Cilk runtime system.

If we record on one worker and replay on one worker,
the record and replay executions proceeds in exactly the
same order. Therefore, the replay execution never has to
suspend. Essentially, the work done by replay is the same
as the work done by record except that replay may need to
search through the lock-acquire arrays if there is ever any
collisions in the section IDs. Thus, for most benchmarks,
replay exhibits similar overhead as in recorded run when
Prec = Prep = 1 as shown in Figure 3

The more interesting case is when we record on more
than one worker and replay on one worker (Prec > 1 and
Prep = 1). In this case, process-oblivious replay has ad-
ditional overheads — namely the overhead of suspending
and resuming lock acquires. Note that when we replay (on
one worker) an execution recorded on multiple workers, the
worker likely encounters critical sections in a different order
than the recorded execution did. When a worker encounters a
critical section that it cannot execute yet, it must suspend its
current deque and work steal. In addition, since it steals work



replay on one, recorded on P
application P = 1 P = 2 P = 4 P = 8 P = 12 P = 16
chess 65.14 (1.01×) 65.13 (1.01×) 65.11 (1.01×) 65.17 (1.01×) 65.20 (1.01×) 65.13 (1.01×)

dedup 48.16 (1.00×) 48.15 (1.00×) 48.16 (1.00×) 48.21 (1.00×) 48.11 (1.00×) 48.20 (1.00×)

ferret 9.10 (1.02×) 8.95 (1.01×) 8.95 (1.01×) 8.94 (1.01×) 8.93 (1.00×) 8.93 (1.00×)

matching 10.07 (1.04×) 10.13 (1.05×) 10.13 (1.05×) 10.17 (1.05×) 10.37 (1.08×) 10.43 (1.08×)

MIS 3.77 (1.11×) 3.90 (1.15×) 3.94 (1.16×) 3.93 (1.16×) 3.97 (1.17×) 4.04 (1.19×)

refine 13.63 (0.93×) 13.67 (0.93×) 13.47 (0.91×) 13.73 (0.93×) 13.70 (0.93×) 13.73 (0.93×)

Table 3: Execution times, in seconds, when replaying on one worker executions recorded on different number of workers. The
numbers shown in parenthesis indicate the overhead compared to the execution time of that recorded on one worker.

at random, the next critical section it acquires may again not
be ready. Therefore, the worker may suspend many deques
before encountering a critical section it can execute.

We can gauge such an overhead by comparing the over-
head of executions with Prec > 1 and Prep = 1 with the
overhead of executions with Prec = Prep = 1 shown in Fig-
ure 3. It turns out that for the most part, the additional over-
head incurred by suspending and resuming lock acquires is
negligible — at most a few percent increase for the memory-
bound benchmarks.

5.3 Scalability of Record
To analyze the scalability of PORRidge for recording,
we compare the speedup of record to the baseline’s. The
speedup is computed with respect to their respective one-
worker execution counterpart. Table 4 shows scalability of
both the baseline and recorded runs across benchmarks (the
first two columns). The scalability profile for record tracks
that of the baseline closely across all benchmarks. This is es-
pecially surprising for memory-bound benchmarks since the
workers spend longer within critical sections during record-
ing compared to the baseline. In spite if this, it appears
that the additional overhead is distributed across processors
evenly and did not reduce the overall parallelism by much.

5.4 Scalability of Replay
Table 4 also shows scalability of replay runs that replay
executions recorded on Prec = 1, 2, 4, 8, 12, 16 processors.
Here, we measure the speedup of a replay run by comparing
it against the time replaying the same recorded execution on
one worker (i.e., Prec = 1).

Recall the time bound for replay: its expected execution
time on P workers is O(W/P + S̃ lg lgP ), where W is the
overall work in the computation and the S̃ is the span in the
augmented dag. Since S ≤ S̃ ≤ S +B, replay should scale
as long as record scales if we ignore the lg lgP term. For
most benchmarks, we do see that the replay scales similarly
to the recorded execution whenPrec = Prep (the highlighted
cells in Figure ??), indicating that it is generally safe to
ignore the lg lgP term and that the overheads of suspending
and restarting in replay is small.

The two exceptions are data points in matching and
MIS. There are two possible explanation. The first is that
the augmented dag is running out parallelism. We don’t be-

lieve that this is the case, since if replay uses more workers
Prep > Prec, we continue to see the execution scales (i.e.,
by looking at the scalability of data points below the high-
lighted cells). The more likely explanation is the following:
these benchmarks are already memory bound, and replay has
a much larger memory footprint than record, causing addi-
tional cache misses, and the higher memory latency slows
down the parallel execution. Indeed, these executions incur
higher cache misses during replay than during record. There
are two reasons for these additional cache misses. First, dur-
ing replay, workers suspend their current deque from time
to time (discussed in Section 3) and thus can create large
number of suspended deques. Second, while record can use
a bloom filter and do without a hash list, replay must use ei-
ther an array or a hash list. While arrays have fewer cache
misses than the hash list, both of these have a larger mem-
ory footprint than the bloom filter. Indeed, recall that one of
the optimizations that we implemented for replay is to use a
lock-acquire array instead of a hash list if the number of lock
acquires per lock is small (which is the case for these bench-
marks). The overhead of replay was much higher when we
used a hash list in our initial implementation, which requires
even more memory than the array.

The additional memory footprint also in part explains the
data points with higher standard deviation. How many addi-
tional deques created during replay is a function of schedul-
ing, and the number of suspended deques can differ from
run to run. Execution times for benchmarks that are already
memory bound will be more sensitive to this changes in the
number of suspended deques.

5.5 Benefits of Processor Obliviousness
As our experimental data indicates, processor-oblivious
record and replay can be implemented efficiently. The only
time PORRidge exhibits non-negligible overhead is when
the benchmark is already memory bound. For dynamic
multithreaded computations, a processor-aware record-and-
replay system would need to log additional information to
record the inherent non-determinism in the scheduler, which
would further increase the memory footprint of the record-
ing.

Moreover, the strategy used by PORRidge has the addi-
tional benefit of scaling the replay beyond the number work-



replay on P workers (Prep = P ) an execution recorded on P’ workers (Prec = P ′)
bench P baseline record P’ = 1 P’ = 2 P’ = 4 P’ = 8 P’ = 12 P’ = 16

chess

1 64.49 (1.00×) 64.36 (1.00×) 65.14 (1.00×) 65.13 (1.00×) 65.11 (1.00×) 65.17 (1.00×) 65.20 (1.00×) 65.13 (1.00×)
2 32.20 (2.00×) 32.20 (2.00×) 32.60 (2.00×) 32.60 (2.00×) 32.61 (2.00×) 32.64 (2.00×) 32.63 (2.00×) 32.66 (1.99×)
4 16.11 (4.00×) 16.11 (4.00×) 16.50 (3.95×) 16.36 (3.98×) 16.35 (3.98×) 16.37 (3.98×) 16.35 (3.99×) 16.34 (3.99×)
8 8.15 (7.91×) 8.13 (7.92×) 8.55 (7.62×) 8.31 (7.84×) 8.42 (7.73×) 8.45 (7.71×) 8.34 (7.82×) 8.31 (7.84×)

12 5.38 (11.99×) 5.38 (11.96×) 5.91 (11.02×) 5.65 (11.53×) 5.75 (11.32×) 5.75 (11.33×) 5.66 (11.52×) 5.63 (11.57×)
16 4.04 (15.96×) 4.11 (15.66×) 4.52 (14.41×) 4.50 (14.47×) 4.47 (14.57×) 4.57 (14.26×) 4.32 (15.09×) 4.35 (14.97×)

dedup

1 48.04 (1.00×) 48.20 (1.00×) 48.16 (1.00×) 49.15 (1.00×) 48.16 (1.00×) 48.21 (1.00×) 48.11 (1.00×) 48.20 (1.00×)
2 24.43 (1.87×) 24.44 (1.94×) 24.58 (1.92×) 24.44 (1.88×) 24.44 (1.95×) 24.43 (1.95×) 24.45 (1.96×) 24.42 (1.94×)
4 12.43 (3.86×) 12.40 (3.89×) 12.61 (3.82×) 12.55 (3.84×) 12.51 (3.85×) 12.40 (3.89×) 12.40 (3.88×) 12.41 (3.88×)
8 6.43 (7.47×) 6.49 (7.43×) 6.72 (7.17×) 6.69 (7.20×) 6.61 (7.29×) 6.46 (7.47×) 6.45 (7.46×) 6.46 (7.46×)

12 4.52 (10.63×) 4.53 (10.64×) 4.88 (9.87×) 4.83 (9.97×) 4.75 (10.14×) 4.63 (10.41×) 4.55 (10.57×) 4.55 (10.59×)
16 3.61 (13.31×) 3.65 (13.32×) 3.95 (12.19×) 3.94 (12.22×) 3.89 (12.38×) 3.76 (12.82×) 3.69 (13.04×) 3.64 (13.24×)

ferret

1 8.92 (1.00×) 8.89 (1.00×) 9.10 (1.00×) 8.95 (1.00×) 8.95 (1.00×) 8.94 (1.00×) 8.93 (1.00×) 8.93 (1.00×)
2 4.52 (1.97×) 4.57 (1.95×) 4.53 (2.01×) 4.54 (1.97×) 4.56 (1.96×) 4.52 (1.98×) 4.53 (1.97×) 4.52 (1.98×)
4 2.31 (3.86×) 2.33 (3.82×) 2.32 (3.92×) 2.34 (3.82×) 2.32 (3.86×) 2.32 (3.85×) 2.31 (3.87×) 2.32 (3.85×)
8 1.27 (7.02×) 1.24 (7.17×) 1.24 (7.34×) 1.24 (7.22×) 1.27 (7.05×) 1.26 (7.10×) 1.26 (7.09×) 1.26 (7.09×)

12 0.91 (9.80×) 0.91 (9.77×) 0.93 (9.78×) 0.90 (9.94×) 0.91 (9.84×) 0.92 (9.72×) 0.92 (9.71×) 0.91 (9.81×)
16 0.76 (11.74×) 0.78 (11.40×) 0.75 (12.13×) 0.75 (11.93×) 0.75 (11.93×) 0.75 (11.92×) 0.75 (11.91×) 0.74 (12.07×)

matching

1 3.06 (1.00×) 9.64 (1.00×) 10.07 (1.00×) 10.13 (1.00×) 10.13 (1.00×) 10.17 (1.00×) 10.37 (1.00×) 10.43 (1.00×)
2 1.92 (1.67×) 5.78 (1.46×) 6.88 (1.49×) 6.82 (1.49×) 6.93 (1.46×) 6.64 (1.53×) 6.68 (1.55×) 6.63 (1.57×)
4 0.96 (3.19×) 3.03 (3.18×) 3.95 (2.55×) 3.90 (2.60×) 3.75 (2.70×) 3.64 (2.79×) 3.63 (2.86×) 3.62 (2.88×)
8 0.50 (6.12×) 1.68 (5.74×) 3.77 (4.31×) 3.99 (4.57×) 4.22 (4.61×) 2.22 (4.58×) 2.21 (4.69×) 2.11 (4.94×)

12 0.32 (9.56×) 1.13 (8.53×) 2.57 (3.92×) 2.42 (4.19×) 2.21 (4.58×) 1.89 (5.38×) 1.77 (5.86×) 1.68 (6.21×)
16 0.25 (12.24×) 0.89 (10.83×) 2.56 (3.93×) 2.41 (4.20×) 2.11 (4.80×) 1.79 (5.68×) 1.58 (6.56×) 1.57 (6.64×)

MIS

1 1.02 (1.00×) 3.40 (1.00×) 3.77 (1.00×) 3.90 (1.00×) 3.94 (1.00×) 3.93 (1.00×) 3.97 (1.00×) 4.04 (1.00×)
2 0.65 (1.57×) 2.03 (1.67×) 2.57 (1.47×) 2.54 (1.54×) 2.48 (1.59×) 2.47 (1.59×) 2.45 (1.62×) 2.52 (1.60×)
4 0.32 (3.19×) 1.03 (3.30×) 1.63 (2.31×) 1.52 (2.57×) 1.36 (2.90×) 1.34 (2.93×) 1.33 (2.98×) 1.32 (3.06×)
8 0.16 (6.38×) 0.58 (5.86×) 1.38 (2.73×) 1.14 (3.42×) 0.93 (4.24×) 0.79 (4.97×) 0.81 (4.90×) 0.79 (5.11×)

12 0.13 (7.85×) 0.22 (8.10×) 1.54 (2.45×) 1.26 (3.10×) 0.89 (4.43×) 0.69 (5.70×) 0.61 (6.51×) 0.67 (6.03×)
16 0.14 (7.29×) 0.38 (8.95×) 1.50 (2.51×) 1.28 (3.05×) 0.94 (4.19×) 0.73 (5.38×) 0.61 (6.51×) 0.63 (6.41×)

refine

1 11.70 (1.00×) 14.73 (1.00×) 13.63 (1.00×) 13.67 (1.00×) 13.47 (1.00×) 13.73 (1.00×) 13.70 (1.00×) 13.73 (1.00×)
2 7.36 (1.59×) 9.32 (1.58×) 9.38 (1.45×) 9.11 (1.50×) 9.19 (1.47×) 9.32 (1.47×) 9.13 (1.50×) 9.17 (1.50×)
4 4.40 (2.66×) 5.53 (2.66×) 5.60 (2.43×) 5.49 (2.49×) 5.35 (2.52×) 5.36 (2.56×) 5.26 (2.60×) 5.34 (2.57×)
8 3.15 (3.71×) 3.87 (3.81×) 4.29 (3.18×) 3.99 (3.43×) 3.90 (3.45×) 3.77 (3.64×) 3.74 (3.66×) 3.66 (3.75×)

12 2.73 (4.29×) 3.32 (4.44×) 3.91 (3.49×) 3.62 (3.78×) 3.44 (3.92×) 3.36 (4.09×) 3.36 (4.08×) 3.31 (4.15×)
16 2.45 (4.78×) 3.04 (4.86×) 3.61 (3.78×) 3.39 (4.03×) 3.21 (4.20×) 3.04 (4.52×) 3.00 (4.57×) 2.96 (4.64×)

Table 4: Execution times on P = 1, 2, 4, 8, 12, 16, in seconds, and their scalability profile for all benchmarks. Each of the
replay columns shows the replay time with Prep = P workers replaying the same recorded execution (with Prec = P ′, as
shown in the column heading). The numbers in the parenthesis indicate the speedup comparing to its single-worker execution
counterpart, which has the 1.00 speedup. The highlighted cells indicate replay runs that uses the same number of workers as in
the recording.

ers used in record, which a processor-aware record and re-
play system cannot provide. If a recording is done on P
workers and takes x time, in a processor-aware system, the
replay cannot run in less than x time (asymptotically) no
matter how many workers we give it. In fact, it would likely
be slower since it would spin when it encounters a lock ac-
quire that is not ready and would have to exactly replicate the
steal patterns of the record, causing potentially more idle-
ness. On the other hand, PORRidge never spins during re-
play and uses suspension to explore all the possible paral-
lelism in the augmented dag. Therefore, as the experiments
indicate, replay often runs just as fast as the record when
Prep = Prec, and can continue to scale when Prep > Prec.

6. RELATED WORK
Record and Replay. To our knowledge, all software-based
record and replay systems are tied to thread-based program-
ming models: a runtime system records the behavior and in-
terleaving of the threads in the program, and on replay re-
runs the same threads with the same behavior. Recording and
replaying on the same number of threads simplifies both the
recording process (as thread-based identifiers can be used to

identify operations) and the replay process (as there is no
need to map operations from the recorded run onto a differ-
ent number of threads). RecPlay [63] and JaRec [34] do not
handle racy accesses, and have reasonable overhead, but, as
with PORRidge, are unsound in the presence of races.

Racy accesses are more challenging, since accesses to
shared memory result in happens-before edges that must be
preserved during replay. For systems that handle racy ac-
cesses, there are several approaches. Some speculate that
races are infrequent or irrelevant to keep recording overhead
down [43, 68]. Some preserve a limited amount of informa-
tion during record and rely on offline search or constraint-
solving approaches to generate the information required for
replay [2, 37, 48, 56]. Some systems track racy interleav-
ings directly, which either add large overhead [42, 70], use
coarse-granularity communication tracking (such as page-
based conflict detection) that can be overly-conservative [29,
41], or rely on carefully modified virtual machines [20].

One could apply a traditional thread-based record-and-
replay system on dynamic multithreaded computation di-
rectly, and record all sources of nondeterminism in order
to replay deterministically. PinPlay [57] is such a general



record and replay system based on Pin, a popular dynamic
binary instrumentation framework [50], that captures all
sources of nondeterminism including racy memory accesses,
thread interleavings, and results from system calls. We ran
PinPlay on Delaunay Refinement (refine described in Sec-
tion 5) and find that it has 96.8× overhead for recording
and 16.1× overhead for replay when executing the compu-
tation on one worker — 1-2 orders of magnitudes worse than
the PORRidge overheads of 1.26× and 1.16×, respectively.
When we tried recording and replaying on multiple work-
ers, the executions with PinPlay slowed down and showed no
speedup. This result in part speaks to the performance advan-
tage of PORRidge’s approach, because PORRidge does not
need to reproduce the runtimes non-determinism while tra-
ditional thread-based record-and-replay systems must. Re-
producing the runtimes non-determinism requires logging
all inter-thread interactions among worker threads and caus-
ing a worker thread to spin wait (instead of doing useful
work) when it reaches a recorded inter-thread interaction be-
fore the other thread gets there. Note that such inter-thread
interactions include all failed steal attempts between a thief
and a victim worker, since a failed steal attempt is com-
municated through shared memory accesses. Chimera [44],
another record-and-replay system for pthreaded code, on the
other hand, uses static race detection to identify potentially-
racing pairs of accesses, and uses lightweight synchroniza-
tion, as well as lock coarsening, to enable a simple record
and replay technique. Such an approach, could be adapted to
make PORRidge applicable to racy Cilk programs.

Another strategy is to record information at the hardware
level [36, 53, 58, 69], by piggy-backing on cache-coherence
protocols to record communication between different hard-
ware contexts. While these systems could, in principle, be
used to record the behavior of Cilk programs and to cap-
ture the non-determinism introduced by the scheduler, they
have two drawbacks: 1) like existing software-based models,
their (hardware) context-based recording system constrains
replay to run with the same level of parallelism as record; 2)
they require hardware modifications, and hence do not work
in any existing commodity systems.

Determinism. A related technique is deterministic exe-
cution, where a combination of programming model con-
straints and runtime checks ensures that an application al-
ways produces the same behavior when presented with the
same input. Note that this is subtly different than record and
replay: in record and replay, different recorded runs can ex-
hibit different behaviors; replay must replicate whichever
recorded run it is replaying. One approach to determin-
ism is to mandate it through programming model restric-
tions [12, 15, 19, 22, 54, 61] which generally preclude gen-
eral use of locks and other synchronization mechanisms.
Moreover, while some of these approaches can provide de-
terminism independent of the number of threads [15, 54],
most do not. Another approach is to enforce determinism

through hardware [26, 27], compiler [10], OS [4, 11] or run-
time approaches [49, 55]. While these techniques do not
require specialized programming models, these techniques
are usually not processor oblivious.

Dynamic Analyses for Dynamic Multithreading. The
most common analysis tool for dynamic multithreading pro-
gramming models is on the fly race detection — for a given
input, these tools run the program on that input once while
keeping track of enough information that allows them to re-
port a race if and only if the program contains a race on
that input. Over the years, researchers have proposed al-
gorithms for doing this both sequentially [30, 59] and in
parallel [9, 51, 60, 67]. Some of these have led to imple-
mentations [30, 60, 67]. The parallel tools are generally
processor-oblivious; a single run on any number of workers
gives the correct answer. Another important class of tools is
performance profilers, that either measure work and span of
the program directly during execution [35, 64] or use sam-
pling to determine where in the code causes workers to be
idle [66].

Work-stealing Runtime with Multiple Deques. Prior work-
stealing designs have used more than P deques for sup-
porting concurrent data structures [1, 67] or blocking I/O
operations [52, 71]; some provide theoretical scheduling
bounds [1, 52, 67], but their modifications are for a different
purpose and require different modifications and analyses.

7. CONCLUSION
This paper presented the first processor oblivious record
and replay scheme for data race-free dynamic multithreaded
programs. This scheme is provably good, efficient in prac-
tice, and provides good scalability. There are many direc-
tions of future work. First, we could target a richer set of
primitives that induce happens-before relationships; for in-
stance, try-lock and compare-and-swap. These require
rethinking the exact semantics we want from a happens-
before edge, since, in some cases, programs use the non-
determinism induced by these mechanisms to enable effi-
ciency, complicating which edges we want to record. Sec-
ond, we could try to expand to programs with data races —
this would involve recording happens-before relationships
not just between critical sections, but also between accesses
to memory locations that could be involved in races. As men-
tioned in the introduction, this does not require conceptual
changes to PORRidge, just the ability to indicate to POR-
Ridge where non-determinism due to races might occur. Fi-
nally, we can explore other mechanisms to enable processor-
oblivious record and replay to see if some of them will give
better performance.
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[23] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar. Habanero-Java: the
new adventures of old X10. In Proceedings of the 9th Interna-
tional Conference on Principles and Practice of Programming
in Java, PPPJ ’11, pages 51–61, 2011.

[24] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: An object-
oriented approach to non-uniform cluster computing. In
20th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages
519–538, 2005. URL http://doi.acm.org/10.1145/

1094811.1094852.

[25] G.-I. Cheng, M. Feng, C. E. Leiserson, K. H. Randall, and
A. F. Stark. Detecting data races in Cilk programs that use
locks. In Proceedings of the 10th ACM Symposium on Parallel
Algorithms and Architectures, SPAA ’98, 1998.

[26] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: Deter-
ministic Shared Memory Multiprocessing. In ACM Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, pages 85–96, 2009. doi:
http://doi.acm.org/10.1145/1508244.1508255.

[27] J. Devietti, J. Nelson, T. Bergan, L. Ceze, and D. Grossman.
RCDC: A Relaxed Consistency Deterministic Computer. In
ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 67–
78, 2011. doi: http://doi.acm.org/10.1145/1950365.1950376.

[28] E. W. Dijkstra. Co-operating sequential processes. In
F. Genuys, editor, Programming Languages, pages 43–112.
Academic Press, London, England, 1968. Originally pub-
lished as Technical Report EWD-123, Technological Univer-
sity, Eindhoven, the Netherlands, 1965.

[29] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M.
Chen. Execution Replay of Multiprocessor Virtual Machines.
In ACM/USENIX International Conference on Virtual Execu-
tion Environments, pages 121–130, 2008. doi: http://doi.acm.
org/10.1145/1346256.1346273.

[30] M. Feng and C. E. Leiserson. Efficient detection of determi-
nacy races in Cilk programs. In SPAA, 1997.

[31] J. T. Fineman and C. E. Leiserson. Race detectors for Cilk
and Cilk++ programs. In D. Padua, editor, Encyclopedia of
Parallel Computing, pages 1706–1719. Springer, 2011.

[32] M. Frigo, C. E. Leiserson, and K. H. Randall. The imple-
mentation of the Cilk-5 multithreaded language. In ACM SIG-
PLAN Conference on Programming Language Design and Im-
plementation, pages 212–223, 1998.

[33] M. Frigo, P. Halpern, C. E. Leiserson, and S. Lewin-Berlin.
Reducers and other Cilk++ hyperobjects. In 21st Annual ACM
Symposium on Parallelism in Algorithms and Architectures,
pages 79–90, 2009.

[34] A. Georges, M. Christiaens, M. Ronsse, and K. De Boss-
chere. JaRec: A Portable Record/Replay Environment for
Multi-threaded Java Applications. Software Practice & Ex-
perience, 34(6):523–547, 2004. ISSN 0038-0644. doi: 10.
1002/spe.579.

[35] Y. He, C. E. Leiserson, and W. M. Leiserson. The Cilkview
scalability analyzer. In Proceedings of the Twenty-Second
Annual ACM Symposium on Parallelism in Algorithms and

Architectures (SPAA’10), pages 145–156, Santorini, Greece,
June 13–15 2010. doi: 10.1145/1810479.1810509.

[36] D. R. Hower, P. Montesinos, L. Ceze, M. D. Hill, and J. Tor-
rellas. Two Hardware-Based Approaches for Deterministic
Multiprocessor Replay. Communications of the ACM, 52:93–
100, 2009. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/
1516046.1516068.

[37] J. Huang, C. Zhang, and J. Dolby. CLAP: Recording Local
Executions to Reproduce Concurrency Failures. In ACM Con-
ference on Programming Language Design and Implementa-
tion, pages 141–152, 2013. doi: 10.1145/2491956.2462167.

[38] Institute of Electrical and Electronic Engineers. Information
technology — Portable Operating System Interface (POSIX)
— Part 1: System application program interface (API) [C
language]. IEEE Standard 1003.1, 1996 Edition.

[39] TBB. Intel(R) Threading Building Blocks. Intel
Corporation, 2009. Available from http://www.

threadingbuildingblocks.org/documentation.php.

[40] Intel. Intel Cilk Plus Language Specification. Intel Corpo-
ration, 2010. Document Number: 324396-001US. Available
from http://software.intel.com/sites/products/

cilk-plus/cilk_plus_language_specification.pdf.

[41] O. Laadan, N. Viennot, and J. Nieh. Transparent, Lightweight
Application Execution Replay on Commodity Multiproces-
sor Operating Systems. In ACM SIGMETRICS Joint Inter-
national Conference on Measurement and Modeling of Com-
puter Systems, pages 155–166, 2010. ISBN 978-1-4503-0038-
4. doi: 10.1145/1811039.1811057. URL http://doi.acm.

org/10.1145/1811039.1811057.

[42] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging Par-
allel Programs with Instant Replay. IEEE Transactions on
Computers, 36:471–482, 1987. ISSN 0018-9340. doi: http:
//dx.doi.org/10.1109/TC.1987.1676929.

[43] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M.
Chen, and J. Flinn. Respec: Efficient Online Multiprocessor
Replay via Speculation and External Determinism. In ACM
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 77–90,
2010. doi: http://doi.acm.org/10.1145/1736020.1736031.

[44] D. Lee, P. M. Chen, J. Flinn, and S. Narayanasamy. Chimera:
Hybrid Program Analysis for Determinism. In ACM Confer-
ence on Programming Language Design and Implementation,
pages 463–474, 2012. doi: 10.1145/2254064.2254119.

[45] I.-T. A. Lee and T. B. Schardl. Efficiently detecting races in
cilk programs that use reducer hyperobjects. In Proceedings
of the 27th ACM on Symposium on Parallelism in Algorithms
and Architectures (SPAA’15), pages 111–122, Portland, OR,
USA, June 2015. doi: 10.1145/2755573.2755599.

[46] D. Leijen and J. Hall. Optimize managed code for multi-
core machines. MSDN Magazine, 2007. Available from
http://msdn.microsoft.com/magazine/.

[47] C. E. Leiserson, T. B. Schardl, and J. Sukha. Deter-
ministic parallel random-number generation for dynamic-
multithreading platforms. In PPoPP, 2012.

[48] P. Liu, X. Zhang, O. Tripp, and Y. Zheng. Light: Replay via
Tightly Bounded Recording. In ACM Conference on Pro-



gramming Language Design and Implementation, pages 55–
64, 2015. ISBN 978-1-4503-3468-6. doi: 10.1145/2737924.
2738001.

[49] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads: Effi-
cient Deterministic Multithreading. In ACM Symposium on
Operating Systems Principles, pages 327–336, 2011. doi:
http://doi.acm.org/10.1145/2043556.2043587.

[50] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: building
customized program analysis tools with dynamic instrumen-
tation. In Proceedings of the ACM SIGPLAN 2005 Confer-
ence on Programming Language Design and Implementation
(PLDI’05), pages 190–200, Chicago, IL, USA, June 11–15
2005. doi: 10.1145/1065010.1065034.

[51] J. Mellor-Crummey. On-the-fly detection of data races for
programs with nested fork-join parallelism. In Proceedings
of the 1991 ACM/IEEE Conference on Supercomputing (Su-
percomputing ’91), pages 24–33, Albuquerque, NM, USA,
Nov. 18–22 1991. doi: 10.1145/125826.125861.

[52] S. K. Muller and U. A. Acar. Latency-hiding work stealing:
Scheduling interacting parallel computations with work steal-
ing. In Proceedings of the 28th ACM Symposium on Par-
allelism in Algorithms and Architectures, SPAA ’16, pages
71–82, New York, NY, USA, 2016. ACM. ISBN 978-1-
4503-4210-0. doi: 10.1145/2935764.2935793. URL http:

//doi.acm.org/10.1145/2935764.2935793.

[53] S. Narayanasamy, C. Pereira, and B. Calder. Recording
Shared Memory Dependencies Using Strata. In ACM Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, pages 229–240, 2006. doi:
http://doi.acm.org/10.1145/1168857.1168886.

[54] D. Nguyen, A. Lenharth, and K. Pingali. Deterministic galois:
On-demand, portable and parameterless. In Proceedings of the
19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS
’14, pages 499–512, New York, NY, USA, 2014. ACM. ISBN
978-1-4503-2305-5. doi: 10.1145/2541940.2541964. URL
http://doi.acm.org/10.1145/2541940.2541964.

[55] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: Efficient
Deterministic Multithreading in Software. In ACM Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, pages 97–108, 2009. doi:
http://doi.acm.org/10.1145/1508244.1508256.

[56] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H.
Lee, and S. Lu. PRES: Probabilistic Replay with Execu-
tion Sketching on Multiprocessors. In ACM Symposium on
Operating Systems Principles, pages 177–192, 2009. doi:
http://doi.acm.org/10.1145/1629575.1629593.

[57] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie.
PinPlay: A framework for deterministic replay and repro-
ducible analysis of parallel programs. In Proceedings of
the 8th Annual IEEE/ACM International Symposium on Code
Generation and Optimization, CGO ’10, pages 2–11, Toronto,
Ontario, Canada, 2010. ACM. ISBN 978-1-60558-635-9. doi:
10.1145/1772954.1772958. URL http://doi.acm.org/

10.1145/1772954.1772958.
[58] G. Pokam, C. Pereira, K. Danne, R. Kassa, and A.-R.

Adl-Tabatabai. Architecting a Chunk-based Memory Race

Recorder in Modern CMPs. In IEEE/ACM International Sym-
posium on Microarchitecture, pages 576–585, 2009. doi:
http://doi.acm.org/10.1145/1669112.1669183.

[59] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav. Ef-
ficient data race detection for async-finish parallelism. In
H. Barringer, Y. Falcone, B. Finkbeiner, K. Havelund, I. Lee,
G. Pace, G. Rosu, O. Sokolsky, and N. Tillmann, editors, Run-
time Verification, volume 6418 of Lecture Notes in Computer
Science, pages 368–383. Springer Berlin / Heidelberg, 2010.
ISBN 978-3-642-16611-2.

[60] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav. Scal-
able and precise dynamic datarace detection for structured
parallelism. In Proceedings of the 33rd ACM SIGPLAN Con-
ference on Programming Language Design and Implementa-
tion, PLDI ’12, pages 531–542, 2012.

[61] M. C. Rinard and M. S. Lam. The Design, Implementation,
and Evaluation of Jade. ACM Transactions on Programming
Languages and Systems, 20:483–545, 1998. ISSN 0164-0925.
doi: http://doi.acm.org/10.1145/291889.291893.

[62] A. D. Robison. Cilk Plus solver for a chess puz-
zle or: How i learned to love fast rejection. https:

//software.intel.com/en-us/articles/cilk-plus-

solver-for-a-chess-puzzle-or-how-i-learned-

to-love-rejection, Feb. 2013.

[63] M. Ronsse and K. De Bosschere. RecPlay: A Fully Inte-
grated Practical Record/Replay System. ACM Transactions
on Computer Systems, 17:133–152, 1999. ISSN 0734-2071.
doi: http://doi.acm.org/10.1145/312203.312214.

[64] T. B. Schardl, B. C. Kuszmaul, I.-T. A. Lee, W. M. Leiserson,
and C. E. Leiserson. The Cilkprof scalability profiler. In
Proceedings of the 27th ACM on Symposium on Parallelism
in Algorithms and Architectures (SPAA ’15), SPAA ’15, pages
89–100, Portland, Oregon, USA, June 2015. doi: 10.1145/
2755573.2755603.

[65] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Ky-
rola, H. V. Simhadri, and K. Tangwongsan. Brief announce-
ment: the Problem Based Benchmark Suite. In Proceedings of
the 24th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’12, 2012.

[66] N. R. Tallent and J. M. Mellor-Crummey. Effective perfor-
mance measurement and analysis of multithreaded applica-
tions. In Proceedings of the 14th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP
’09, pages 229–240, Raleigh, NC, USA, 2009. ACM. ISBN
978-1-60558-397-6. doi: 10.1145/1504176.1504210. URL
http://doi.acm.org/10.1145/1504176.1504210.

[67] R. Utterback, K. Agrawal, J. T. Fineman, and I.-T. A. Lee.
Provably good and practically efficient parallel race detection
for fork-join programs. In Proceedings of the 28th ACM
Symposium on Parallelism in Algorithms and Architectures,
SPAA ’16, pages 83–94, New York, NY, USA, 2016. ACM.
ISBN 978-1-4503-4210-0. doi: 10.1145/2935764.2935801.
URL http://doi.acm.org/10.1145/2935764.2935801.

[68] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen,
J. Flinn, and S. Narayanasamy. DoublePlay: Parallelizing Se-
quential Logging and Replay. In ACM International Confer-



ence on Architectural Support for Programming Languages
and Operating Systems, pages 15–26, 2011. doi: http://doi.
acm.org/10.1145/1950365.1950370.

[69] M. Xu, R. Bodik, and M. D. Hill. A “Flight Data Recorder”
for Enabling Full-system Multiprocessor Deterministic Re-
play. In ACM/IEEE International Symposium on Computer
Architecture, pages 122–135, 2003. doi: http://doi.acm.org/
10.1145/859618.859633.

[70] Z. Yang, M. Yang, L. Xu, H. Chen, and B. Zang. ORDER:
Object Centric Deterministic Replay for Java. In USENIX
Annual Technical Conference, pages 30–30, 2011.

[71] C. S. Zakian, T. A. K. Zakian, A. Kulkarni, B. Chamith, and
R. R. Newton. Concurrent Cilk: Lazy Promotion from Tasks
to Threads in C/C++, pages 73–90. Springer International

Publishing, Cham, 2016. ISBN 978-3-319-29778-1. URL
http://dx.doi.org/10.1007/978-3-319-29778-1_5.

A. Artifact Evaluation
PORRidge is open source and currently available at https:
//gitlab.com/wustl-pctg-pub/porridge.git. The
library is provided under The MIT License, while the
runtime modifications are licensed separately under a BSD
license. The repository contains complete instructions for
compiling and using PORRidge, in addition to scripts
that reproduce most of the empirical results. Please send
feedback or file issues at our gitlab repository to help us
continually improve the project.


