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ABSTRACT

Although concurrent data structures are commonly used in prac-
tice on shared-memory machines, even the most efficient concur-
rent structures often lack performance theorems guaranteeing lin-
ear speedup for the enclosing parallel program. Moreover, effi-
cient concurrent data structures are difficult to design. In contrast,
parallel batched data structures do provide provable performance
guarantees, since processing a batch in parallel is easier than deal-
ing with the arbitrary asynchrony of concurrent accesses. They
can limit programmability, however, since restructuring a parallel
program to use batched data structure instead of a concurrent data
structure can often be difficult or even infeasible.

This paper presents BATCHER, a scheduler that achieves the
best of both worlds through the idea of implicit batching, and a
corresponding general performance theorem. BATCHER takes as
input (1) a dynamically multithreaded program that makes arbitrary
parallel accesses to an abstract data type, and (2) an implementa-
tion of the abstract data type as a batched data structure that need
not cope with concurrent accesses. BATCHER extends a random-
ized work-stealing scheduler and guarantees provably good per-
formance to parallel algorithms that use these data structures. In
particular, suppose a parallel algorithm has T1 work, T∞ span, and
n data-structure operations. Let W (n) be the total work of data-
structure operations and let s(n) be the span of a size-P batch. Then
BATCHER executes the program in O((T1 +W (n) + ns(n))/P+
s(n)T∞) expected time on P processors. For higher-cost data struc-
tures like search trees and large enough n, this bound becomes
((T1+n lgn)/P+T∞ lgn), provably matching the work of a sequen-
tial search tree but with nearly linear speedup, even though the data
structure is accessed concurrently. The BATCHER runtime bound
also readily extends to data structures with amortized bounds.
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1. INTRODUCTION
A common approach when using data structures within parallel

programs is to employ concurrent data structures — data struc-
tures that can cope with multiple simultaneous accesses. Not only
is it challenging to design and analyze concurrent data structures,
but the existing performance theorems do not often imply linear
speedup for the enclosing program. The straightforward way to an-
alyze a program that uses a concurrent data structure is to assume
the worst-case latency for each access. For a limited set of concur-
rent data structures (see Section 6), the worst-case latency is low
enough that this approach is effective. In more general cases, the
worst-case latency is often linear in the number of processors in
the system (or worse), e.g., for Braginsky and Petrank’s lock-free
B+-tree [7].1 If n data-structure accesses each keep a processor
busy for Ω(P) timesteps, then the running time on P processors is
at least Ω(nP/P) = Ω(n). An Ω(n) bound means that accesses are
essentially sequential — there is no significant speedup guarantee
when running on P processors.

Concurrent data structures are in some sense overkill for use
within a single parallel program because they are designed to cope
with difficult access patterns. Since the data-structure accesses be-
long to the same enclosing program, they can, in principle, coordi-
nate with each other. A key idea behind our work is to leverage a
runtime scheduler and to handle this coordination.

The primary goal of this paper is to 1) describe a good scheduler
for executing a broad class of parallel programs that make parallel

1The worst case occurs when all processors concurrently insert
contiguous keys. The progress bound proven [7] is worse, since
the data structure is designed to cope with processor failures. But
even assuming no failures and simplifying the data structure, an
Ω(P) worst-case bound still occurs when P processes attempt a
compare-and-swap on the same node in the tree.



accesses to data structures, and 2) provide a corresponding general
performance theorem for this scheduler. Our performance theo-
rem exhibits an attractive modularity: the data structure may be
analyzed in isolation of the program that uses it, and the parallel
program may be analyzed without considering the specific imple-
mentation of the data structure. This modularity makes the the-
orem easy to apply while still achieving provably good speedup,
e.g., for n parallel accesses to a search tree with large enough n,
our scheduling theorem proves a completion time of Θ(n lgn/P),
which is asymptotically optimal and has linear speedup. We are
unaware of any comparable aggregate bounds for concurrent search
trees.

Runtime scheduling. This paper focuses on parallel programs
expressed through dynamic multithreading2 (see [11, Ch. 27]),
which is common in many parallel languages and libraries, such
as Cilk dialects [18, 26], Intel TBB [35], Microsoft Task Parallel
Library [39] and subsets of OpenMP [30]. The programmer ex-
presses algorithmic parallelism, through linguistic constructs such
as “spawn” and “sync,” “fork” and “join,” or parallel loops. The
programmer does not provide any mapping from subcomputations
to processors. The program is typically scheduled using an efficient
work-stealing scheduler (e.g., [6]) provided by the runtime system.
A parallel program (without parallel data structure accesses) hav-
ing T1 work — the running time on 1 processor, and T∞ span —
the length of the critical path, can be executed in O(T1/P+ T∞)
(expected) time on P processors (or workers) using a work-stealing
scheduler. This running time is asymptotically optimal and guaran-
tees linear speedup to programs with sufficient parallelism.

This paper generalizes the above result by describing a sched-
uler and corresponding performance theorem for dynamic multi-
threaded programs that make parallel accesses to a data structure.
This performance theorem implies that parallel programs (with suf-
ficient parallelism) using efficient data-structure implementations
can execute with linear speedup, even if the program’s work is dom-
inated by data-structure accesses.

Batched data structures. One way to programmatically coordi-
nate data-structure accesses is to use only batched data structures,
where the program invokes an entire set of data-structure opera-
tions synchronously, and the batched data structure performs these
operations collectively in parallel. The main advantages of batched
data structures are: (1) only one batch is active at a time, obviating
the need for complicated concurrency control within the data struc-
ture, (2) parallelism may be used to accelerate individual batches,
and (3) they are relatively easy to analyze; if a program generates
a sequence of batches, we can simply add the running time of this
sequence of batches to the running time of the program. For ex-
ample, (batched) parallel priority queues [8, 12, 13, 36] have been
utilized to prove efficient running time on parallel algorithms such
as shortest paths and minimum spanning tree [8, 13, 32].

Getting provably good performance by replacing a concurrent
data structure with a batched data structure can require drastic code
restructuring, however, since the parallel program must explicitly
group accesses into batches. In some cases, such a restructuring
may not even be possible. For example, an on-the-fly race detec-
tor [29, 5, 34] updates a series-parallel-maintenance data structure
on forks and joins while executing an input program. In this appli-
cation, the data structure must be updated before the program flow
continues past the calling point, so it seems impossible to reorga-
nize the operations into batches by restructuring the algorithm.

2Dynamic multithreading is also sometimes called “fork-join” par-
allelism.

Contributions

This paper shows we can achieve a modular analytic abstraction
whereby the data structure D and the enclosing program C may be
analyzed separated, then combined through a strong performance
theorem guaranteeing good parallel running time. This result ap-
plies to the broad class of dynamically multithreaded computations.
We achieve the runtime theorem through the novel technique of im-
plicit batching coupled with an efficient runtime scheduler.

Implicit batching. This paper focuses on the novel technique of
implicit batching, which achieves benefits of both concurrent and
batched data structures. In implicit batching, the programmer pro-
vides two components: (1) a parallel program C containing parallel
accesses to a abstract data type D , and (2) a batched data-structure
implementing the data structure D . The scheduler dynamically and
transparently organizes the program’s parallel accesses to the data
structure into batches, with at most one batch executing at a time.

Using implicit batching gives the benefits of batched data struc-
tures without restructuring the enclosing program C . The scheduler
is responsible for grouping any concurrent accesses to the abstract
data type D into batches and invoking the appropriate implementa-
tion of a batched operation. The data structure’s batched operation
may be implemented using dynamic multithreading (see Section 3
for examples). The data-structure’s implementation need not cope
with concurrency since at most one batch is executing at any time,
and hence locks or atomic operations may be omitted. The sched-
uler handles all synchronization and communication between the
parallel program C and the data structure D .

Implicit batching closely resembles flat combining [21], where
each concurrent access to a data-structure queues up in a list of
operation records, and this list of records (i.e., a batch) is later ex-
ecuted sequentially. Implicit batching may be viewed as a general-
ization of flat combining in that it allows parallel implementations
of batched operations, instead of only a sequential one allowed by
flat combining. Due to sequential batches, flat combining does not
guarantee provable speedup guarantees. However, flat combining
has been shown to be more efficient in practice than some of the
best concurrent data structures under certain loads. Viewing flat
combining as a specific implementation of implicit batching, al-
ready shows the practical effectiveness of implicit batching — this
paper focuses on obtaining a provably good runtime theorem.

Scheduler and performance theorem. Implicit batching poses its
own challenges for performance analysis. For a parallel program
using implicit batching, which sequence of batches should be an-
alyzed? What overhead does the scheduler incur when creating
batches? In general, the performance of a parallel program using
implicit batching depends on the particular runtime scheduler used
to execute the program.

To yield a performance theorem, we propose BATCHER, a work-
stealing scheduler designed for implicit batching. Given a dynam-
ically multithreaded program C that makes parallel accesses to an
ADT D , and a batched implementation of D , it yields the following
bound, proven in Section 5:

THEOREM 1. Consider a dynamically multithreaded program

C having T1 work and T∞ span. Let n be the total number of data-

structure operations (accesses to ADT D), and m be the maximum

number of data-structure operations along any sequential depen-

dency chain. For the given implementation of D , let W (n) be the

worst-case total work for n data-structure operations grouped ar-

bitrarily into batches, and let s(n) be the worst-case span of a par-

allel size-P batched operation.3 Then the expected running time of

3We employ only binary forking, so s(n)≥ lgP implicitly.



this program on P processors using BATCHER4 is at most

O

(

T1

P
+T∞ +

W (n)+ns(n)

P
+ms(n)

)

.

An important feature about this bound is that T1 and T∞ are the work
and span of the core program C , independent of the data struc-
ture implementation. Similarly, n and m count the data-structure
calls in the program, and depend only on the program C , not the
data structure implementation. Moreover, s(n) and W (n) are per-
formance measures of the batched implementation D of the data
structure, independent of the enclosing program. We are thus es-
sentially adding the program’s cost to the data structure’s cost. This
bound also applies when the analysis of the batched data structure is
amortized, through a more general definition of s(n) (see Section 2
for definitions). For many parallel batched data structures (see Sec-
tion 3 for examples), this performance theorem implies nearly lin-
ear speedup.

The remainder of this paper is organized as follows. Section 2
presents the theoretical model we use to analyze parallel programs
that make accesses to parallel data structures. Section 3 provides
a high-level overview of BATCHER and applies the performance
bound to example batched data structure. Section 4 presents the
BATCHER scheduling algorithms, which is analyzed in Section 5;
we built a prototype implementation of BATCHER and show pre-
liminary experiments in Section 7. Section 6 discusses related work
on using data structures in parallel.

2. DEFINITIONS AND ANALYTIC MODEL
Recall that a programmer provides two inputs to the BATCHER

scheduler: (1) A parallel program C that makes parallel accesses to
an abstract data type D , and (2) a batched data structure that imple-
ments D and need only support one batch at a time. This section
defines how the parallel program and the batched data structure are
modeled.

Execution dag model. In the absence of data-structure operations,
the execution of a dynamically multithreaded computation can be
modeled as a directed acyclic graph (dag) that unfolds dynamically
(see [11, Ch. 27]). In this execution dag, each node represents
a unit-time sequential subcomputation, and each edge represents
control-flow dependencies between nodes. A node that corresponds
to a “fork” has two5 outgoing edges, and a node corresponding to
a “join” has two or more incoming edges.

A scheduler is responsible for choosing which nodes to execute
on each processor during each timestep. The scheduler may only
execute ready nodes — those unexecuted nodes whose predeces-
sors have all been executed. The convenient feature about the com-
putation dag is that it models the control-flow constraints within
the program without capturing the specific choices made by the
scheduler. The dag unfolds dynamically — only the immediate
successors of executed nodes are revealed to the scheduler. This
unfolding can also be nondeterministic. Hence the scheduler must
make online decisions. All of our analyses are with respect to the
a posteriori dag. The two key features of a dag are its work, which
is the number of (unit-length) nodes in the dag, and its span, which
is the length of the longest directed path through the dag.

4Just as in standard work-stealing results, our theoretical bounds
assume that the only synchronization of the input algorithm occurs
through “syncs” or “joins”; the algorithm or data structure code
itself does not use explicit synchronization primitives, e.g., locks
or compare-and-swaps.
5In general, forks may have arbitrary out-degree, but in this paper
we pessimistically assume binary forking.

Extending the dag model to implicit batching. We first model
the batched data structure that implements D . An implementation
of a batched operation is itself a parallel (sub)computation that may
include forks and joins. We thus model the execution of each batch
A by its own batch dag GA. We use the terms batch work, denoted
by wA, and batch span, denoted by sA, to refer to the work and span
of the batch dag, respectively.

To analyze a batched data structure as a whole, we consider
worst-case sequences of arbitrary batches, such that the total num-
ber of data structure operations across all batches is n, and each
batch contains at most P data structure operations. We define the
data-structure work, denoted by WP(n), to be the maximum total
work of any such sequence of batches. We also define the data-

structure span, denoted by sP(n), to be the worst-case span of any
batch dag A in any such sequence subject to the the restrictions that
wA/sA = O(P), meaning that the batch has limited parallelism. In
the case when the data structure’s analysis is not amortized, the
data-structure span may be stated more concisely as the worst-
case span of any batch dag that represents a size-P batch, since
all batches of the same size have the same span. For data structures
with amortized analysis, however, batches with the same number of
operations may have different spans — therefore, the batch span is
defined in terms of the parallelism of the batch dag rather than the
number of operations in the batch. Since P (the number of workers)
is static throughout this paper, we use W (n) and s(n) as shorthands
for WP(n) and sP(n). Note that whereas data-structure work cor-
responds to the total work of all batches that cumulatively contain
n operations, the data-structure span corresponds to the span of a
single batch with P operations. Thus far we have not considered
a program that makes accesses to the data structure, we have only
considered the data structure implementation. It should thus be
clear that W (n) and s(n) are metrics of the data structure imple-
mentation itself.

We model the enclosing program C , which makes parallel calls
to a data structure (these operations will be implicitly batched), as
another kind of dag, called the core dag G. A core dag is just
like a standard execution dag, except that it includes two kinds
of nodes. Each data-structure operation (that is to be implicitly
batched) is represented by a special data-structure node. All other
non-data-structure nodes in the dag are called core nodes. Whereas
all core nodes by definition take unit-time to execute on a proces-
sor, the data-structure nodes represent blocking calls that may take
longer to complete. Our metrics for the core dag, however, avoid
this issue — we define the core work, which we generally denote
by T1, to be the number of nodes in the core dag, and the core

span, denoted by T∞, to be the longest path through the core dag
in terms of number of nodes. We also generally use n to refer to
the number of data-structure nodes in the core dag, and m to de-
note the maximum number of data-structure nodes falling along
any directed path through G. Although the core dag includes data-
structure nodes whose “execution times” are not defined, the met-
rics T1, T∞, n, and m are functions of only the core program, not the
implementation of batched operations.

No extra dependencies between data-structure nodes? It may be
surprising that modeling the core dag and batch dags separately as
described throughout this section can be sufficient for the analysis
of any scheduler. A priori, one might expect execution-dependent
“happens-before” relationships across all data-structure calls, par-
ticularly since the scheduler must group operations into batches.
Moreover, one might be surprised that the “length” of data-structure
nodes is not modeled anywhere. Nevertheless, in Section 5 we
prove that this simple model is sufficient for the BATCHER sched-
uler, which is a key contribution of the paper.



3. IMPLICIT BATCHING IN BATCHER
This section overviews implicit batching in the context of the

BATCHER scheduler with respect to the core and batch dags de-
fined in Section 2. The specific algorithms employed by the sched-
uler itself are deferred to Section 4. This section also gives a simple
example of a program using an implicitly batched data structure to
provide concrete examples of applying the performance theorem.

Programming Interface. BATCHER provides distinct interfaces
to the algorithm programmer, who writes a program C that makes
parallel accesses to ADT D; and the data-structure programmer,
who provides the batched implementation of ADT D . The runtime
system stitches together these interfaces and does the scheduling.
Figures 1 and 2 (discussed later in this section) show a simple ex-
ample program making n parallel increments to a shared counter
using this interface style.

To perform a data-structure operation, the program C makes a
call into the runtime system, denoted by BATCHIFY here. As far as
the algorithm programmer is concerned, BATCHIFY (correspond-
ing to a data-structure node in the core dag) resembles a normal
procedure call to access a concurrent data structure, and the con-
trol flow blocks at this point until the operation completes.

A BATCHER data structure, on the other hand, must provide an
implementation of a parallel batched operation, which we denote
by BOP. Since BOP is a batched implementation, it takes as input
a set (i.e., an array) of operations to the ADT D to perform. Note
that BOP is itself a dynamically multithreaded function that can
use spawn/sync or parallel loops to generate parallelism. A single
invocation of the Bop function corresponds to a single batch dag.

Batching. At a high level, calls to BATCHIFY correspond to data-
structure nodes and BATCHER is responsible for implicitly batch-
ing these data structure operations and then executing these batches
by calling BOP. When a worker p encounters a data-structure node
u (i.e., p executes a call to BATCHIFY), p alerts the scheduler to the
operation by creating an operation record op for that operation and
placing it in a particular memory location reserved for this proces-
sor. Eventually, op will be part of some batch A and the scheduler
will call BOP on A. Unlike core nodes, however, the data-structure
node can logically block for longer than one time step and u’s suc-
cessor(s) in the dag do not become ready until after this call to
BOP returns, that is, the operation corresponding to u is actually
performed on the data structure as part of a batch. Thus from the
perspective of the core program, a data-structure node u has the
same semantics as a blocking access to a concurrent data structure.

Inherent to implicit batching is the idea that the batch the sched-
uler invokes only one batch at a time. Hence the data-structure
implementation need not cope with concurrency, simplifying the
data-structure design. The following invariant states this property
for BATCHER.

INVARIANT 1. At any time during a BATCHER execution, at

most one batch is executing.

There are many other choices that go into a scheduler for im-
plicit batching. For BATCHER, we made specific choices guided
by the goal of proving a performance theorem. Three of the main
questions are what basic type of scheduler to use, how large batches
should be, and when and how batches are launched. As far as the
low-level details are concerned, we chose in favor of simplicity
where possible. BATCHER is a distributed work-stealing sched-
uler. BATCHER also restricts batch sizes, as stated by the follow-
ing invariant; this size cap ameliorates application of the main the-
orem as it simplifies the analysis of any specific data structure.

INVARIANT 2. In a BATCHER execution, batches contain at

most P data-structure nodes.

Finally, whenever an operation record is created and no batch is cur-
rently in progress, BATCHER immediately launches a new batch; it
does not wait for a certain number of operations to accrue; this de-
cision is important for the theoretical analysis. Therefore, batches
can contain as few as one operation. Launching a batch includes
some (parallel) setup to gather all operation outstanding operation
records, executing the provided (parallel) batched operation BOP

thereby inducing a batch dag, and some (parallel) cleanup after
completing. Since the setup/cleanup overhead is scheduler depen-
dent, we account for the overhead separately, and the batch dag
comprises only the steps of BOP.

Intuition behind the analysis. The analysis of BATCHER (Sec-
tion 5) relies on specific features of the scheduling algorithm (Sec-
tion 4). Nevertheless, we have already exposed one significant dif-
ficulty: since batches launch as soon as possible, some batches may
contain just a single data-structure node. If this were true for every
batch, then all operations would be sequentialized according to In-
variant 1, and it would seem impossible to show good speedup. In
addition, the batch setup and cleanup overhead is the same, regard-
less of batch size; therefore, having many small batches may incur
significant overhead.

Fortunately, small batches fall into two cases, both being good.
(1) Many data structure nodes accrue while a small batch is exe-
cuting. These will be part of the next batch, meaning that the next
batch will be large and make progress toward the batch work W (n).
(2) Not many data structure nodes are accruing. Then the core dag
is not blocked on too many data-structure nodes, and progress is be-
ing made on the core work T1. In both cases, the setup and cleanup
overhead of the small batch can be amortized either against the
work done in the next batch or the work done in the core dag.

Example and applying the performance bound

To understand the BATCHER performance bound (Theorem 1), let
us turn to some specific examples. We are not developing new
batched data structures here — the point is only to illustrate the
power of batched data structures, and to see how to apply the bound.

As a simple example, consider a core program that makes n com-
pletely parallel increments to a shared counter, as given by Fig-
ure 1. This example is for illustration only, and is not intended to
be very deep. This program has Θ(n) core work and Θ(lgn) core
span (with binary forking). The shared counter is an abstract data
type that supports a single operation INCREMENT, which atomi-
cally adds a value (possibly negative) to the counter and returns its
current value.

Concurrent counter. A trivial concurrent counter uses atomic
primitives like fetch-and-add to INCREMENT. If the primitive is
mutually exclusive (which is true for fetch-and-add on current hard-
ware), then n INCREMENTs take Ω(n) time. The total running time
of the program is thus Ω(n) regardless of the number of processors.

One could instead use a provably efficient concurrent counter,
e.g., by using the more complicated combining funnels [37, 38].
Doing so would indeed yield a good overall running time, but these
techniques are not applicable to more general data structures. As
we shall see next, the implicitly batched counter achieves good
asymptotic speedup with a trivial implementation.

Batched counter. Figure 2 shows a sample batched counter. Here,
when the core program makes an INCREMENT call, it creates an
operation record which is handed-off to the scheduler. The sched-
uler later runs the batch increment BOP on a set of increments. The
main subroutine of the batched operation is “parallel prefix sums”,



1 parallel_for i = 1 to n

2 do B[i] = INCREMENT(A[i])

Figure 1: A parallel loop that performs n parallel updates to a

shared counter. Here, A[1 . .n] is an array of values by which to

increment (or decrement if negative) the counter, and B[1 . .n]
holds any return values from the INCREMENTs.

3 struct OpRecord {int value; int result;}

INCREMENT(int x)
4 OpRecord op

5 op .value = x

6 BATCHIFY(this,op) //ask the scheduler to batch op

7 return op .result

BOP(OpRecord D[1 . .size])
8 let v be the value of the counter
9 D[1]’s value field = v+D[1]’s value

10 perform parallel-prefix-sums on value fields of D[1 . .size],
storing sums into result fields of D[1 . .size]

// now D[i]’s result =
∑i

k=1 D[k]’s value

11 set the counter to D[size]’s result

Figure 2: A batched-counter implementation. As we shall see

in Section 4, line 6 logically blocks, but the processor does not

spin-wait. The BOP is called by the scheduler automatically.

which in parallel computes
∑i

k=1 D[k] for every i. It is easy to

prove that returning
∑i

k=1 D[k] yields linearizable [25] counter op-
erations. Prefix sums is a commonly used and powerful primitive
in parallel algorithms, and hence we consider this 4-line implemen-
tation of BOP to be trivial. Adaptations of Ladner and Fischer’s ap-
proach to prefix sums [28] to the fork-join model have O(x) work
and (lgx) span for x elements.

To analyze the execution of this program using BATCHER, we
need only bound W (n), the total work of arbitrarily batching n op-
erations, and s(n), the span of a batched operation that processes
P operation records (performs P increment operations). Since the
work of prefix sums is linear, we have W (n) = Θ(n). Since a size-
P batch has O(lgP) span (dominated by prefix sums), we have

s(n) = O(lgP). We thus get the bound O( T1+n lgP
P +m lgP+T∞)

for performing n INCREMENTs, with at most m along any path.
The core dag of Figure 1 has T1 = O(n), T∞ = O(lgn), m = 1, so

we have a running time of O( n lgP
P + lgn) for n > P. This nearly

linear speedup is much better than for the trivial counter.

Applying BATCHER to a search tree. There exists an efficient
batched 2-3 tree [33] in the PRAM model, and it is not too hard
to adapt this algorithm to dynamic multithreading. The main chal-
lenge in a search tree is when all inserts occur in the same node of
the tree, e.g., when inserting P identical keys. The main idea of this
batched search tree is to first sort the new elements, then insert the
middle element and recurse on each half of the remaining elements.
This process allows for each of the new keys to be separated by ex-
isting keys without concurrency control. It is not obvious how to
leverage the same idea in a concurrent search tree.

See [33] for details of the batched search tree. Suffice it to say
that a size-x batch is dominated by two steps: 1) a parallel search
for the location of each key in the tree, having O(x lgn) work and
O(lgn + lgx) span, and 2) a parallel sort of the x keys, having

O(x lgx) work. The data-structure span is thus s(n) = O(lgn +
sort(P)), where sort(P) = O(lgP lg lgP) [10] is the span of a par-
allel sort on P elements in the dynamic-multithreading model. The
data-structure work W (n) is maximized for n/P batches of size
x = P, yielding W (n) = O(n lgn) data-structure work. Applying

Theorem 1, we get a running time of O(
T1+W (n)+s(n)

P +ms(n) +

T∞) =O( T1+n lgn+n lgP lg lgP
P +m lgn+m lgP lg lgP+T∞). For large

enough n (specifically, n = Ω(Plg lgP), this reduces to O( T1+n lgn
P +

m lgn + T∞), which is asymptotically optimal in the comparison
model and provides linear speedup for programs with sufficient
parallelism. For instance, a program obtained by substituting the
increment operation with an insert in Figure 1 would yield the run-
ning time of O(n lgn/P), implying linear speedup, even though the
program only performs data structure accesses.

Amortized LIFO stack. We now briefly describe an example,
namely a LIFO stack, which has amortized performance bounds.
The data structure is an array that supports two operations: a PUSH

that inserts an element at the end of the array, and a POP that re-
moves and returns the last element. Such an array can be imple-
mented using a standard table doubling [11] technique, whereby
the underlying table is rebuilt (in parallel) whenever it becomes too
full or too empty. To PUSH a batch of x elements into an n-element
array, check if n+ x elements fit in the current array. If so, in par-
allel simply insert the ith batch element into the (n+ i)th slot of
the array. If not, first resize the array by allocating new space and
copying all existing elements in parallel. POPs can be simultane-
ously supported by breaking the batch into a PUSH phase followed
by a POP phase.

To analyze this data structure, the (amortized) work of a size-
x batch is Θ(x), yielding W (n) = Θ(n) (worst case). The work
of any individual batch, however, can be as high as Θ(n) when a
table doubling occurs. More importantly, any batch A that has wA

batch work has batch span sA = O(lgwA). Hence any batch A that
performs wA ≥ P2 work has parallelism wA/sA = Ω(P2/ lgP). We
thus conclude that the data-structure span is s(n) = O(lg(P2)) =
O(lgP). Plugging these bounds into Theorem 1, we get a total

running time of O( T1+n lgP
P +m lgP+T∞).

4. THE BATCHER SCHEDULER
This section presents the high-level design of the BATCHER

scheduler, a variant of a distributed work-stealing scheduler. We
use P to refer to the number of workers, or threads/cores, given to
the scheduler. Since BATCHER is a distributed scheduler, there
is no centralized scheduler thread and the operation of the sched-
uler can be described in terms of state-transition rules followed by
each of the P workers. First, we describe the internal state that
BATCHER maintains in order to implicitly batched data-structure
operations and to coordinate between executing the core and batch
dags. We then describe how batches are launched and how load-
balancing is done using work-stealing.

BATCHER state. The BATCHER scheduler maintains three cat-
egories of shared state: (1) collections for tracking the implicitly
batched data-structure operations, (2) status flags for synchronizing
the scheduler, and (3) deques for each worker tracking execution-
dag nodes (see Section 2) and used by work stealing. With the
exception of one global flag, most of this state is distributed across
workers, with each worker only managing specific updates accord-
ing to the provided rules that define the scheduler.

To track active data-structure nodes, BATCHER maintains two
arrays. When a worker encounters a data-structure node (executes
a call to BATCHIFY(op)), instead of accessing the data-structure di-



rectly, an operation record op is created and placed in the pending

array and the data-structure node is suspended. BATCHER guaran-
tees that each worker has at most one suspended node / pending op-
eration at any time; therefore this pending array may be maintained
as a size-P array, with a dedicated slot for each of the P work-
ers. BATCHER also maintains a working set, which is a densely
packed array of all the operation records being processed as part of
the currently executing batch.

To synchronize batch executions, BATCHER maintains a single
global active-batch flag. In addition, each worker p has a local
work-status flag (denoted Status[p]), which describes the status of
p’s current data-structure node. BATCHER guarantees that at any
instant, each worker has at most one data-structure node u that it is
trying to execute. For concreteness, think in terms of the following
four states for worker status Status[p]:

• pending, if p has an operation record op for a suspended
data structure node u in the pending array.

• executing, if p has an operation record op for a suspended
data structure node u in the working set, i.e., a batch contain-
ing u is currently executing.

• done, if the batch A containing u has completed its compu-
tation, but p has not yet resumed the suspended node u.

• free, if p has no suspended data-structure node.

If Status[p] is pending, executing, or done, we say p is trapped

on operation u. Otherwise, we say p is free.
Finally, BATCHER maintains two deques of ready nodes on each

worker: a core deque for ready nodes from the core dag, and a
batch deque for ready nodes from a batch dag. In particular, the
deques in BATCHER obey the following invariant:

INVARIANT 3. Ready nodes belonging to the core dag G are

always placed on some worker’s core deque, whereas ready nodes

that belong to some batch A’s batch dag GA are always placed on

some worker’s batch deque.

Associated with these deques, each worker p also has an assigned

node — the node that p is currently executing. At any instant,
the assigned node of p may conceptually be associated with either
the core deque or the batch deque, depending on the type of node
being executed by that worker. Some workers may be executing
core nodes while others are executing batch nodes.

Background: traditional work stealing. In a traditional work-
stealing scheduler [6], each of P workers maintains a core deque of
ready nodes, and at any time, a worker p has at most one assigned
node u that the worker is currently executing. When u finishes, it
may enable at most 2 nodes. If 1 or 2 node(s) are enabled, p assigns
one to itself and places the other (if any) at the bottom of its deque.
If none are enabled, then p removes the node at the bottom of its
deque and assigns it to itself. If p’s deque is empty, then p becomes
a thief , randomly picks a victim worker and steals from the top of
the victim’s deque. If the victim’s deque is not empty, then the steal
attempt succeeds, otherwise it fails.

BATCHER algorithm. BATCHER uses a variant of work steal-
ing, with some augmentations to support implicit batching. Free
workers and trapped workers behave quite differently. Initially all
workers are free, and all ready nodes belong to the core dag, and
BATCHER behaves similarly to traditional work stealing. As data-
structure nodes are encountered, however, the situation changes.
The scheduling rules are outlined in Figure 3 and described below.

Free workers behave closest to traditional work stealing. A free
worker is allowed to execute any node (core or batch), but it only
steals if both of its deques are empty. Specifically, if either deque is
nonempty, the worker executes a node off the nonempty deque, and

When p is free and both deques are empty:
steal from random victim, using alternating-steal policy

When a data-structure node u is assigned to (free) worker p:
insert operation record into pending[p]
Status[p] = pending

suspend u

// p is now trapped

When p is trapped and its batch deque is empty:
if Status[p] = done

then Status[p] = free

resume executing the core deque from
suspended data-structure node u

// p is now free
else if global batch flag = 0 and

compare-and-swap(global batch flag, 0, 1)
then run LAUNCHBATCH

else steal from random victim’s batch deque

Figure 3: Scheduler-state transition rules invoked by workers

with empty deques. When the appropriate deque is not empty,

the worker removes the bottom node from the deque and exe-

cutes it.

any newly enabled nodes are placed on the same deque. BATCHER
thus maintains the following invariant:

INVARIANT 4. Workers that have free status in BATCHER can

have at most one of their deques non-empty, i.e., they have nodes

either on the batch deque or core deque, but not both.

If both deques are empty, however, the free worker performs a steal
attempt according to an alternating-steal policy: each worker’s kth
steal attempt (successful or not) is from a random victim’s core
deque if k is even, and from a random victim’s batch deque if k is
odd. The alternating-steal policy is important to achieve the perfor-
mance bound in Section 5.

When a (free) worker p executes a data-structure node u, p first
inserts the corresonding operation record op in its dedicated slot in
the pending array, and then it changes its own status to pending. At
this point, the p becomes trapped on u, and according to Invariant 4,
it has an initially empty batch deque.

Unlike free workers, which are allowed to execute both core and
batch work, trapped workers are only allowed to execute nodes
from a batch deque. If a trapped worker p has a nonempty batch
deque, it simply selects a node off the batch deque as in traditional
work stealing. If it has an empty batch deque, however, it performs
the following step. First, it checks whether its data-structure node
u has finished, i.e., if Status[p] = done. If so, it changes its own
status to free and resumes from the suspended data-structure node
on the core deque. Otherwise, it checks the global batch status flag
and tries to set it using an atomic operation if no batch is executing.
If successful in setting the flag, p “launches” a batch. If it is un-
successful (someone else successfully set the flag and launched a
batch) or if a batch is already executing (status flag was already 1)
it simply tries to steal from a random victim’s deque. BATCHER
guarantees that if no batch is executing, then all workers have sta-
tus either pending, done or free; therefore, only pending workers
can succeed in launching a new batch.



LAUNCHBATCH()

1 parallel_for i = 1 to P

do if Status[i] = pending then Status[i] = executing

2 compact all executing op records, moving them from
pending array to working set

// using parallel prefix sums subroutine
3 execute BOP (the actual parallel batch) on records in working set
4 parallel_for i = 1 to P

do if Status[i] = executing then Status[i] = done

remove done op records from the working set.
5 reset global batch-status flag to 0

Figure 4: Pseudocode for launching a batch. This method exe-

cutes as an ordinary task in a dynamic multithreaded compu-

tation, i.e., it may run using any number of workers between 1

to P workers, depending on how work-stealing occurs.

Launching a batch. Launching a batch corresponds to injecting
the parallel task LAUNCHBATCH (see Figure 4), i.e., by inserting
the root of the subdag induced by this code on a worker’s batch
deque. This process has five steps. First, the pending array is pro-
cessed in parallel, changing the status of all pending workers to
executing, thereby acknowledging the operation record. Second,
the executing records are packed together in the working-set ar-
ray, which can be performed in parallel using a parallel prefix sums
computation. Third, the actual batched operation (BOP) is exe-
cuted on the records in working set. Fourth, the pending array is
again processed in parallel, changing the status of all executing
workers to done. Finally, the batch-status flag is reset to 0. In prac-
tice, several of these steps can be merged, but we are not concerned
about these low-level optimizations in this paper.

As mentioned above, launching a batch incurs some overhead,
such as updating status fields and compacting the pending array
into working-set, beyond the execution of the batched operation
BOP itself. We refer to this overhead as the batch-setup overhead.
Note that this set-up procedure is itself a dynamic multithreaded
program with Θ(P) work and Θ(lgP) span, primarily due to the
cost of the parallel_for and parallel prefix sums computations over
P elements. This set-up work is performed in exactly the same way
as the batched operation BOP is performed — that is, the nodes of
this procedure are placed on batch deques and are executed in paral-
lel (via work-stealing) by workers working on these deques. Note,
however, that for the purposes of the dag metrics, the overhead is
not counted as part of the batch work, batch span, or data-structure
span defined in Section 2; this omission is by design since the over-
head is a function of the scheduler, not the input program. This
fact is one of the challenges in proving that BATCHER has a good
running time, and it is exacerbated by the fact that the overhead is
as high for a batch containing 1 operation as it is for a batch con-
taining P operations. Nevertheless, we shall show (Section 5) that
BATCHER is provably efficient.

Not trapped long. The following lemma shows that a worker is not
trapped for very long by a particular operation (at most 2 batches).

LEMMA 2. Once the operation record for a data-structure node

u is put into the pending array, at most two batches execute before

the node completes.

PROOF. Consider an operation u whose status changes at time
t to pending. Any batch finishing before time t does not delay u.
Any batch A launched after time t observes u in the pending array,
and incorporates it in A and completes it; this accounts for one

batch execution. According to Invariant 1, there can only be one
batch that is launched before t and finishes after t, which accounts
for the second batch.

Correctness of state changes. Each worker is responsible for
changing its own state from done to free and free to pending.
There is thus no risk of any races on these state changes. The
changes from pending to executing and executing to done

may be performed by an arbitrary worker, but these changes oc-
cur as part of the parallel computation LAUNCHBATCH. Since
LAUNCHBATCH is itself race free and only one LAUNCHBATCH

occurs at a time (protected by the global batch-status flag), these
transitions are also safe.

5. ANALYSIS OF BATCHER
We now analyze the performance of BATCHER. We first provide

some definitions and the statement of the completion time bounds.
Then we use a potential function argument to prove these bounds.

Definitions and theorem statements. We will analyze the running
time using the computation dag G and the set of batch dags that
represent batches generated due to implicit batching performed by
BATCHER. We will analyze the running time using an arbitrary
parameter τ, which will be later related to the data-structure span
s(n). We define a few different types of batches. A batch A is τ-

wide if its batch work is more than Pτ . A batch is τ-long if its batch
span is more than τ. These definitions only count the work and
span within the batched operations themselves, not the batch-setup
overhead due to BATCHER. Since τ is implied, we often drop it and
call batches wide or long. Finally, a batch is popular if it processes
more than P/4 operation records; that is, it contains more than P/4
data structure nodes. A batch is big if it is either long, wide or
popular, or if it occurs immediately before or after a long, wide or
popular batch. All other batches are small.

The above definitions are with respect to individual batches that
arise during an execution. We next define a property of the data
structure itself, analogous to data-structure work (Section 2).

DEFINITION 1. Consider any sequence of parallel batched op-

erations and a real value τ. The τ-trimmed span of the sequence of

batches is the sum of the spans of the long batches in the sequence.

The τ-trimmed span of a data structure, denoted by Sτ(n), is the

worst-case τ-trimmed span for n data-structure nodes grouped ar-

bitrarily into batches.

We now state our main theorem, a bound on the total running
time of a BATCHER computation, which is proven at the end of
this section. The restriction that τ≥ lgP arises from binary forking.

THEOREM 3. Consider a computation with T1 core work, T∞

core span, and n data-structure nodes with at most m falling along

any path through the dag. For any τ ≥ lgP, let Sτ(n) and W (n)
denote the worst-case τ-trimmed span and total work of the data

structure, respectively. Then BATCHER executes the program in

O
(

T1+W (n)+nτ

P +T∞ +Sτ(n)+mτ

)

expected time on P processors.

This theorem holds for any τ ≥ lgP; however, it does not pro-
vide intuition about which τ is best. There is a tradeoff: increasing
τ increases nτ and mτ, but decreasing τ increases Sτ(n) since more
batches become long. As we shall see at the end of this section, set-
ting τ = s(n), the data-structure span (defined in Section 2), yields
Theorem 1 as a corollary since other terms dominate Sτ(n).

Intuition behind the analysis. As with previous work-stealing
analyses, our analysis separately bounds the total number of pro-



cessor steps devoted to various activities; in our case, these activi-
ties are core work, data-structure work, stealing (and failed steal at-
tempts), and the batch-setup overhead. We then divide this total by
P, since each processor performs one processor step per timestep,
to get the completion time.

It is relatively straightforward to see that the number of proces-
sor steps devoted to core work is T1 and the number of time steps
devoted to data structure work is W (n). The difficulty is in bound-
ing the number of steal attempts and the batch set up overhead.
To bound the number of steal attempts, we adopt a potential func-

tion argument similar to Arora et al.’s work-stealing analysis [2],
henceforth referred to as ABP. In the ABP analysis, each ready
node is assigned a potential that decreases geometrically with its
distance from the start of the dag. For traditional work stealing,
one can prove that most of the potential is in the ready nodes at
the top of the deques, as these are the ones that occur earliest in the
dag. Therefore, Θ(P) random steal attempts suffice to process all of
these nodes on top of the deques, causing the potential to decrease
significantly. Therefore, one can prove that O(PT∞) steal attempts
are sufficient to reduce the potential to 0 in expectation.

The ABP analysis does not directly apply to bounding the num-
ber of steal attempts by BATCHER for the following reason. When
a data structure node u becomes ready and is assigned to worker
p, p places the corresponding operation record in the pending ar-
ray and u remains assigned (control flow does not go past u) until
results from u are available. But u may contain most of the poten-
tial of the entire computation (particularly if p’s deque is empty;
in this case u has all of p’s potential). Since u cannot be stolen,
steals are no longer effective in reducing the potential of the com-
putation until the batch containing u completes. To cope with this
difficulty, we apply different progress arguments to big batches and
small batches.

Bounding steal attempts during big batches: For big batches,
we apply the ABP potential function to each batch’s computation
dag. Nodes in a batch dag are never “suspended” in the way data-
structure nodes are, so the ABP argument applies nearly directly.
We charge this case against the τ-trimmed span or the data-structure
work. (As a technical detail, we must also show that P steal at-
tempts overall equate to Ω(P) steal attempts from batch deques in
order to complete the argument.)

Bounding other steal attempts: Unfortunately, small batches
do not contribute to the τ-trimmed span, so the above approach does
not apply.6 Instead, we apply extra machinery to bound these steal
attempts. The intuition is that if many steal attempts actually occur
during a small batch, then the batch should complete quickly (i.e.,
within O(τ) timesteps). On the other hand, if few steal attempts
occur then the workers are being productive anyway, since they
are doing useful work (either core work or data-structure work) in-
stead of stealing. To apply this intuition more formally within the
ABP framework, we augment each data-structure node to comprise
a chain of τ “dummy nodes,” which captures these cases by appro-
priate potential decreases in the augmented dag.

Setup: dag augmentation and potential function. We create an
augmented computation dag, the τ−execution dag G(τ), by adding
a length Θ(τ) chain of dummy nodes before each data-structure
node in the computation dag. The work of this dag is WG(τ) =

T1 +O(nτ) and span is SG(τ) = T∞ +O(mτ).
For the purpose of the analysis, we suppose the scheduler exe-

cutes the augmented dag instead of the original dag. The scheduler

6Adding even P steal attempts for each of potentially n small
batches would result in Ω(nP) steal attempts or Ω(n) running time,
i.e., no parallelism.

operates with one corresponding difference: when a worker en-
counters a data-structure node, this node remains assigned to the
worker, but Θ(τ) nodes of the dummy-node chain are placed at the
bottom of its core deque. If a worker p steals from another worker
p′’s core deque and a dummy node is on the top of that deque, then
p steals and immediately processes the dummy node. This steal is
considered a successful steal attempt. When a worker returns from
a batch, all the dummy nodes on the bottom of its deque disappear.
Note that dummy nodes are only for accounting. Operationally, this
runtime system is identical to the one described in Section 4, except
the analysis now just counts some unsuccessful steals as success-
ful steals. More precisely, whenever a dummy node is stolen from
a victim’s deque, the corresponding steal in the real execution is
unsuccessful because the victim’s deque was empty.

We now define the potentials using this augmented dag. Each
node in G has depth d(u) and weight w(u) = SG −d(u). Similarly,
for a node u in the batch dag GA, d(u) is its depth in that dag, and
its weight is w(u) = sA −d(u). The weights are always positive.

DEFINITION 2. The potential Φu of a node u is 32w(u)−1 if u is

assigned, and 32w(u) if u is ready.

The core potential of the computation is the sum of potentials of
all (ready or assigned) nodes u ∈ G. The batch potential is the
sum of the potentials of all u ∈ GA where A is the currently active
batch (if one exists). The following structural lemmas follow in
a straightforward manner from the arguments used throughout the
ABP paper [2], so we state them without proof here. 7

LEMMA 4. The initial core potential is 3SG and it never in-

creases during the computation.

LEMMA 5. Let Φ(t) denote the potential of the core dag at time

t. If no trapped worker’s deque is empty, then after 2P subsequent

steal attemps from core deques the core potential is at most Φ(t)/4
with probability at least 1/4.

LEMMA 6. Suppose a computation (core or batch) has span

S, and that every “round” decreases its potential by a constant

factor with at least a constant probability. Then the computation

completes after O(S) rounds in expectation, and the total number

of rounds is O(S+ lg(1/ε)) with probability at least 1− ε.

The following two lemmas extend Lemmas 4 and 5 to batch po-
tentials. The proofs of these lemmas can also be derived from ABP
proofs in a similar manner.

LEMMA 7. The batch potential ΦA increases from 0 to 32sA

when A becomes ready, and never increases thereafter.

LEMMA 8. Let ΦA(t) be the potential of batch A at time t. After

2P subsequent steal attempts from batch deques, the potential of A

is at most ΦA(t)/4 with probability at least 1/4.

Since different arguments are required for big and small batches,
we partition steal attempts into three categories. A big-batch steal

attempt is any steal attempt that occurs on a timestep during which
a big batch is executing. A trapped steal attempt is a steal attempt
made by a trapped worker (a worker whose status is not free) on
a timestep when no big batch is active. A free steal attempt is a
steal attempt by a free worker (a worker whose status is free) on

7ABP does not explicitly capture these three lemmas as claims in
their paper — some of their proof is captured by “Lemma 8” and
“Theorem 9” of [2], but the rest falls to interproof dicussion within
the paper .



a timestep when no big batch is active. We can now bound the
different types of steal attempts and the batch-setup overhead.

Big-batch steal attempts. The big-batch steal attempts are bounded
by the following lemma. The proof of this lemma is the most
straightforward of the three cases.

LEMMA 9. The expected number of big-batch steal attempts is

O(nτ+PSτ(n)+W (n)).

PROOF. We first prove that if L is the set of big batches, the
expected number of big batch steal attempts is O(P

∑

A∈L sA).
Consider a particular big batch A. When the first round starts, the

potential of the batch is 32sA (Lemma 7). Divide the steal attempts
that occur while the batch is executing into rounds of 4P steal at-
tempts, except for the last round, which may have fewer. While A

is executing, at least half the steal attempts are from batch deques,
since all the trapped steals are from batch deques, and half the free
steals are from batch deques by the alternating steal policy. There-
fore, in every round, at least 2P steal attempts are from batch de-
ques. Applying Lemma 8, the potential of the batch decreases by a
constant factor with probability 1/4 during each round. Therefore,
applying Lemma 6, we can conclude that there are expected O(sA)
rounds while A is active.

We use linearity of expectation to add over all big batches. We
first add over long, wide and popular batches. The total span of
long batches is Sτ(n) by definition. There are at most W (n)/Pτ

wide batches, and at most n/P popular batches. If they are not also
long, they have span less than τ. We triple the number to account for
batches before and after long, wide or popular batches. Therefore,
we can see that there are the number of rounds during big batches
ar O(Sτ(n)+ nτ/P+W (n)/P). Since each round has at most 4P

steal attempts, we get the desired bound.

Free steal attempts. Here, each “round” consists of 4P consecu-
tive free steal attempts (during which no big batch is active). Recall
that when a worker becomes trapped, it places Θ(τ) dummy nodes
on the bottom of its core deque. We say that a round is bad if,
at the beginning of the round, some trapped worker’s core deque is
empty (does not have any core nodes or dummy nodes). Otherwise,
a round is good. Note that bad rounds only occur while some batch
is executing; otherwise no worker is trapped. We bound good and
bad rounds separately.

Good rounds do not have the problem of too much potential be-
ing concentrated in a suspended data-structure node of a trapped
worker. During a good round, there is more potential in the dummy
nodes than the suspended data-structure node itself, and steal at-
tempts reduce potential.

LEMMA 10. The number of good rounds is O(SG) in expecta-

tion and O(SG+ lg(1/ε)) with probability at least 1−ε. Therefore,

the number of free steal attempts in good rounds is O(PSG) in ex-

pectation and O(PSG +P lg(1/ε)) with probability at least 1− ε.

PROOF. During a good round, there are 4P total steal free steal
attempts, and thus by the alternating steal policy, half of these (2P)
are from core deques. Since no trapped worker’s deque is empty
when the round begins, we can apply Lemma 5 to conclude that
each round decreases the core potential by a constant factor with
a constant probability; being interrupted by a big batch only de-
creases the potential further. We can then apply Lemma 6 to con-
clude that there are O(SG) rounds show the requisite bound; mul-
tiplying by P gives the bound on the number of free steal attempts
during good rounds.

We can now bound the number of bad rounds using the following
intuition. The number of bad rounds is small since small batches
have small spans, chances are most small batches finish before any
trapped worker runs out of dummy nodes.

LEMMA 11. The total number of free steal attempts during bad

rounds is O(nτ) in expectation.

PROOF. A worker p places Θ(τ) = bτ dummy nodes, for con-
stant b, on its core deque when it becomes trapped. There is a bad
round if its core deque is stolen from at least bτ times before p

becomes free again. There are two cases:
Case 1: worker p is trapped for kτ rounds, for some constant

k; applying a Chernoff bounds, during kτ rounds, each core deque
is stolen from < k1τ+ k2 lgP times with probability > (1− 1/P2)
for appropriate settings of constants k1 and k2. If τ ≥ lgP and b =
k1 + k2, then p’s deque runs out of dummy nodes with probability
< 1/P2. Since there can be at most kτ bad rounds, we get the
expected number of bad rounds O(τ/P).

Case 2: worker p is trapped for more than kτ rounds, for constant
k. From Lemma 2, we know that p is trapped for at most 2 batches,
say A1 and A2. Therefore, at least one of A1 and A2, say Ai, must
be active for more than kτ/2 rounds. We first bound the number of
rounds during which Ai can be active, with high probability. If Ai is
active throughout a round, then there are at least 2P steal attempts
from batch deques during the round r (since half the free steal at-
tempts hit batch deques) and Lemma 8 applies. If a batch starts or
ends during r, its potential decreases by a constant factor trivially.
We can then apply Lemma 6 to show that with probability at least
1− ε the batch Ai is active for O(sAi

+ lg(1/ε)) = O(τ+ lg(1/ε))
rounds, since Ai is not long. (p is waiting for the small batch A2;
therefore, the preceding batch A1 is also not long.) We know that
O(τ+ lg1/ε)< k1τ+k2 lg1/ε for some constants k1 and k2; we set
ε = 1/P2 and k/2 = k1 + 2k2. The probability that Ai is active for
kτ/2 rounds is at most 1/P2. There can be at most Pτ bad rounds
for Ai, since each round takes at least one timestep, and a small
batch has at most Pτ work. Therefore, the expected number is at
most O(τ/P).

Adding over the n batches that can trap a worker, and over P

workers, gives us O(nτ) in total.

COROLLARY 12. Ignoring the batch-setup overhead, the ex-

pected number of steps taken by free processors when no big batch

is active is O(T1 +W (n)+nτ+PSG).

PROOF. A free worker is either working (at most T1 +W (n)
steps) or stealing (bounded by Lemmas 10 and 11).

Trapped steal attempts and batch-setup overhead. We next an-
alyze the steal attempts by trapped workers during small batches.
The key idea is as follows. Recall that a worker is trapped by a
batch A only if it has a pending data structure node whose oper-
ation record is being processed by A or will be processed by the
succeeding batch A′ (see Lemma 2). If more than P/2 workers are
trapped on a A, then either A or A′ must be popular, in which case
A is called big. Therefore, at most P/2 workers a be trapped by a
small batch.

LEMMA 13. The expected number of processor steps taken due

to batch-setup overhead and trapped steal attempts is O(T1+W (n)+
nτ+PSG +PSτ(n)).

PROOF. The batch-setup overhead is O(P) per batch. After it
launches, each batch executes for at least 1 timestep and only one
batch executes at a time. For big batches, during this one timestep,



the workers perform P steps of either work (bounded by T1+W (n))
or big batch steals (bounded by Lemma 9). We can amortize the
batch-setup overhead against these P steps. For small batches, at
least P/2 processors are free and again they perform either work
or free steals (bounded by Corollary 12), and we can amortize the
batch-setup overhead against this quantity. Adding these gives us
the bound on batch-setup overhead.

Even if we pessimistically assume that trapped workers do noth-
ing but steal during small batches, since at least half the workers
are free, we can amortize these steals against the steps taken by
free workers which either work or steal or perform batch setup
steps.

Overall running time. We can now bound the overal running time.
We combine the bounds from Lemmas 9, 10 and 11,and substitute
SG = T∞ +mτ and divide by P (since there are P workers perform-
ing these steps) to prove Theorem 3.

PROOF OF THEOREM 3. From Lemmas 9, 10, 11 and 13, we
know that the expected number of big-batch steal attempts is O(nτ+
PSτ(n) +W (n)), free steal attempts is O(PT∞ + Pmτ + nτ), and
trapped steal attempts is O(T1 +W (n)+ nτ+PSG +PSτ(n)). The
total batch-setup overhead is O(T1 +W (n)+ nτ+PSG +PSτ(n)).
Adding the total work and dividing by P gives the result.

We can now set an appropriate value for τ to get the bound
on BATCHER performance. This corollary is equivalent to The-
orem 1.

COROLLARY 14. BATCHER executes the program described

in Theorem 3 in expected time O
(

T1+W (n)+ns(n)
P +ms(n)+T∞

)

.

PROOF. We get this bound by setting τ to be equal to the data
structure span s(n). Recall that long batches are defined as batches
with batch span longer than τ, and τ-trimmed span Sτ(n) is defined
as the sum of the spans of all long batches. Recall, also, from
the definition of the data-structure span s(n) is defined as follows:
For any sequence of batches comprising a total of n data structure
nodes, such that no batch contains more than P data structure nodes,
s(n) is the worst case span of any batch individual A that also has
parallelism limited by wA/sA = O(P).

Since the program has a total of n data-structure nodes, and
BATCHER only generates batches with at most P data structure
nodes, the only batches with sA > s(n) are those where wA/sA =
Ω(P). Now, say L is the set of long batches. For all A ∈ L, we
have wA = Ω(PsA), since all other batches have span smaller than
s(n), hence also smaller than τ, since s(n) = τ. That is, the long
batches are all batches with large parallelism. Therefore, W (n) ≥
∑

A∈L wA =
∑

A∈L Ω(PsA). Since Sτ(n) =
∑

A∈L sA, we conclude
that W (n) = Ω(PSτ(n)), or W (n)/P = Ω(Sτ(n)). The bound fol-
lows from Theorem 3 as W (n)/P dominates Sτ(n).

6. RELATED WORK
BATCHER most closely resembles various software combining

techniques, designed primarily to reduce concurrency overhead in
concurrent data structures. In some combining techniques [15, 21,
31], each processor inserts a request in a shared queue and a sin-
gle processor sequentially executes all outstanding requests later.
These works provide empirical efficiency, but we are not aware of
any theory bounding the running time of an algorithm using these
combiners. BATCHER improves upon these techniques by oper-
ating on the “request queue” in parallel and by providing runtime
theory. Other software-combining techniques include (static) com-
bining trees [20] or (dynamic) combining funnels [38] which apply

directly to data structures with combinable operations like lock ob-
jects, counters, or stacks. These do have a provably O(lgP) over-
head, but do not address more general structures

Several related mechanisms designed for dynamic multithread-
ing have a grounding in theory. Reducers [17] in Cilk can be used
to eliminate contention on some shared global variables, but are
not designed to replace a generic concurrent data structure, since
they create local views on each processor rather than maintain a
single global view. It is also unclear how to analyze reducers that
include highly variable amortized costs. Helper locks [1] provide a
mechanism that allows blocked workers to help complete the criti-
cal section that is blocking them and is not specifically designed for
data structures. Conceptually, one can use this mechanism to exe-
cute batches; however, directly applying the analysis of [1] leads to
worse completion time bounds compared to using BATCHER.

Concurrent data structures themselves are widely studied [24].
Most theoretical work on concurrent data structures focuses on cor-
rectness and forward-progress guarantees like linearizability [25],
lock freedom [23], or wait freedom [22]. While wait-free struc-
tures often include a worst-case performance bound, the bound may
not be satisfying when applied in the context of an enclosing algo-
rithm. For example, a universal wait-free construction of [9] has a
worst-case cost that includes a factor of P, the number of proces-
sors, which implies serializing all data structure operations. Exper-
imental studies of various concurrent B-tree data structures alone
spans over 30 years of research [3, 4, 27, 7]. These results typically
fall short of bounds on running time, with [4] being one exception
assuming uniformly random accesses.

Several batched search trees exist, including 2-3 trees [33], weight-
balanced B-trees [14], and red-black trees [16]. Moreover, some of
these data structures [14, 16] exhibit good practical performance.

7. EXPERIMENTAL EVALUATION
We implemented a prototype of BATCHER within the Cilk-5 [19]

runtime system. Our preliminary evaluation, presented here, is
based around a skip-list data structure. Note that the primary con-
tribution of this paper is the theory; these experiments are meant
to be only proof of concept, not a comprehensive study. Never-
theless, the results indicate that implicit batching is a promising
direction, at least for expensive data structures and large-enough
batches. For the particular experiment here, BATCHER’s perfor-
mance on 1 processor is comparable to that of a sequential skip list,
and hence the overhead is not prohibitive. In addition, BATCHER
provides speedup when running on multiple processors.

We conducted experiments on a 2-socket machine with 8 cores
per socket running Ubuntu 12.04. The processor was Intel Xeon
E5-2687W. The machine has 64GB of RAM and 20MB of L3 cache
per socket. For our experiments, we pinned the threads to a single
socket on this machine.

BATCHER and skip-list implementations. We implemented the
BATCHER scheduler by modifying the Cilk-5 runtime system, es-
sentially as described in Section 4. The main difference between
the theoretical and the practical design is within the LAUNCHBATCH

operation (Figure 4). Because we are running on only 8 cores,
we used a sequential implementation for the status changes status
changes (lines 1 and 4) and the compaction (line 2).

Our batch insert (BOP) into the skip list has three steps. 1) build
a new skip from a set of records, 2) perform searches for these
nodes in the main skip list, and 3) splice the new list into the main
list. Since the new list is small (batch size), we perform steps 1
and 3 sequentially, whereas the searches into the large main list
in step 2 are performed in parallel. The core program is simply a



parallel-for loop that inserts into the skip list in each iteration (e.g.,
as in Figure 1). Note that this is a bad case for BATCHER since
all of the work happens within the data structure, and hence the
overheads are tested.

Experimental scaling. In all our experiments, we first initialize
the skip list with an initial size. We then timed the insertion of
100,000 additional elements into this skip list. To simulate bigger
batches without the NUMA effects of going to multiple sockets,
each BATCHIFY call creates 100 insertion records. We compared
BATCHER with a sequential implementation where all 100,000
elements are inserted sequentially (without concurrency control).

Figure 5 shows the throughput of BATCHER and a sequential
skip list with initialSize 20,000, 100,000, 1 million, 10 million
and 100 million (e.g. BAT20000 shows BATCHER’s with initial
size 20,000). For initial size 20,000 and 100,000, SEQ performs
better than BAT on a single processor. This is because inserts into
small skip lists are so cheap that BATCHER’s overheads begin to
dominate. However, even on these small skip lists, BATCHER pro-
vides speedup, and outperforms the sequential skip list on mul-
tiple processors. For larger skip lists, the inserts get expensive
enough that they dominate BATCHER’s overhead, and BATCHER
performs comparably with the sequential list even on 1 processor.

More interestingly, BATCHER’s speedup increases as the skip
list gets larger. At size 100 million, BATCHER provides a speedup
of about 3× on 6 processors, and 3.33× on 8 workers.

Figure 5: Throughput of BATCHER and sequential skip list

insertion for various initial sizes of skip lists (higher is better).

Flat combining. We view flat combining [21] as a special case of
implicit batching where batches execute sequentially. They show
that flat combining significantly outperforms a good concurrent
skip list, at least for certain workloads, validating the idea of im-
plicit batching. On our experiments, flat combining and BATCHER
perform similarly 1 processor. However, the performance of flat
combining decreases with increasing cores (their experiments also
show this). In contrast, the prototype BATCHER implementation
shows speedup.

8. CONCLUSIONS AND FUTURE WORK
BATCHER scheduler is provably efficient, and preliminary ex-

periments indicate that it could provide speedup in practice, es-
pecially when data structure operations are expensive enough to
amortize the overheads. There are several open questions remain-
ing. Is it possible to remove or reduce the O(lgP) overhead by
using a more clever communication mechanism? What data struc-

tures are easily and efficiently expressible by this batch mecha-
nism? Does BATCHER improve the performance of real parallel
programs? Finally, although BATCHER is designed with work-
stealing in mind, note that it may also be applicable to pthreaded
programs that use data structures. A pthreaded program could run
as normal, with data-structure calls replaced by BATCHER calls
allowing work-stealing to operate over the data structure batches
while static pthreading operates over the main program.
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